| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfdisjs2 | 
							 |-  Disjs = { r e. Rels | ,~ `' r C_ _I } | 
						
						
							| 2 | 
							
								
							 | 
							cosscnvssid5 | 
							 |-  ( ( ,~ `' r C_ _I /\ Rel r ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) )  | 
						
						
							| 3 | 
							
								
							 | 
							elrelsrelim | 
							 |-  ( r e. Rels -> Rel r )  | 
						
						
							| 4 | 
							
								3
							 | 
							biantrud | 
							 |-  ( r e. Rels -> ( ,~ `' r C_ _I <-> ( ,~ `' r C_ _I /\ Rel r ) ) )  | 
						
						
							| 5 | 
							
								3
							 | 
							biantrud | 
							 |-  ( r e. Rels -> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bibi12d | 
							 |-  ( r e. Rels -> ( ( ,~ `' r C_ _I <-> A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) ) <-> ( ( ,~ `' r C_ _I /\ Rel r ) <-> ( A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) /\ Rel r ) ) ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							mpbiri | 
							 |-  ( r e. Rels -> ( ,~ `' r C_ _I <-> A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							rabimbieq | 
							 |-  Disjs = { r e. Rels | A. u e. dom r A. v e. dom r ( u = v \/ ( [ u ] r i^i [ v ] r ) = (/) ) } |