| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfdmf.1 |  |-  F/_ x A | 
						
							| 2 |  | dfdmf.2 |  |-  F/_ y A | 
						
							| 3 |  | df-dm |  |-  dom A = { w | E. v w A v } | 
						
							| 4 |  | nfcv |  |-  F/_ y w | 
						
							| 5 |  | nfcv |  |-  F/_ y v | 
						
							| 6 | 4 2 5 | nfbr |  |-  F/ y w A v | 
						
							| 7 |  | nfv |  |-  F/ v w A y | 
						
							| 8 |  | breq2 |  |-  ( v = y -> ( w A v <-> w A y ) ) | 
						
							| 9 | 6 7 8 | cbvexv1 |  |-  ( E. v w A v <-> E. y w A y ) | 
						
							| 10 | 9 | abbii |  |-  { w | E. v w A v } = { w | E. y w A y } | 
						
							| 11 |  | nfcv |  |-  F/_ x w | 
						
							| 12 |  | nfcv |  |-  F/_ x y | 
						
							| 13 | 11 1 12 | nfbr |  |-  F/ x w A y | 
						
							| 14 | 13 | nfex |  |-  F/ x E. y w A y | 
						
							| 15 |  | nfv |  |-  F/ w E. y x A y | 
						
							| 16 |  | breq1 |  |-  ( w = x -> ( w A y <-> x A y ) ) | 
						
							| 17 | 16 | exbidv |  |-  ( w = x -> ( E. y w A y <-> E. y x A y ) ) | 
						
							| 18 | 14 15 17 | cbvabw |  |-  { w | E. y w A y } = { x | E. y x A y } | 
						
							| 19 | 3 10 18 | 3eqtri |  |-  dom A = { x | E. y x A y } |