Metamath Proof Explorer


Theorem dfeu

Description: Rederive df-eu from the old definition eu6 . (Contributed by NM, 23-Mar-1995) (Proof shortened by Wolf Lammen, 25-May-2019) (Proof shortened by BJ, 7-Oct-2022) (Proof modification is discouraged.) Use df-eu instead. (New usage is discouraged.)

Ref Expression
Assertion dfeu
|- ( E! x ph <-> ( E. x ph /\ E* x ph ) )

Proof

Step Hyp Ref Expression
1 abai
 |-  ( ( E. x ph /\ E! x ph ) <-> ( E. x ph /\ ( E. x ph -> E! x ph ) ) )
2 euex
 |-  ( E! x ph -> E. x ph )
3 2 pm4.71ri
 |-  ( E! x ph <-> ( E. x ph /\ E! x ph ) )
4 moeu
 |-  ( E* x ph <-> ( E. x ph -> E! x ph ) )
5 4 anbi2i
 |-  ( ( E. x ph /\ E* x ph ) <-> ( E. x ph /\ ( E. x ph -> E! x ph ) ) )
6 1 3 5 3bitr4i
 |-  ( E! x ph <-> ( E. x ph /\ E* x ph ) )