Step |
Hyp |
Ref |
Expression |
1 |
|
dfeven4 |
|- Even = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } |
2 |
|
eqcom |
|- ( z = ( 2 x. i ) <-> ( 2 x. i ) = z ) |
3 |
|
2cnd |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) |
4 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
5 |
4
|
adantl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) |
6 |
3 5
|
mulcomd |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) = ( i x. 2 ) ) |
7 |
6
|
eqeq1d |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) = z <-> ( i x. 2 ) = z ) ) |
8 |
2 7
|
syl5bb |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( z = ( 2 x. i ) <-> ( i x. 2 ) = z ) ) |
9 |
8
|
rexbidva |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) <-> E. i e. ZZ ( i x. 2 ) = z ) ) |
10 |
|
2z |
|- 2 e. ZZ |
11 |
|
divides |
|- ( ( 2 e. ZZ /\ z e. ZZ ) -> ( 2 || z <-> E. i e. ZZ ( i x. 2 ) = z ) ) |
12 |
10 11
|
mpan |
|- ( z e. ZZ -> ( 2 || z <-> E. i e. ZZ ( i x. 2 ) = z ) ) |
13 |
9 12
|
bitr4d |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) <-> 2 || z ) ) |
14 |
13
|
rabbiia |
|- { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } = { z e. ZZ | 2 || z } |
15 |
1 14
|
eqtri |
|- Even = { z e. ZZ | 2 || z } |