| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-even | 
							 |-  Even = { z e. ZZ | ( z / 2 ) e. ZZ } | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( z / 2 ) e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							 |-  ( i = ( z / 2 ) -> ( 2 x. i ) = ( 2 x. ( z / 2 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq2d | 
							 |-  ( i = ( z / 2 ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) /\ i = ( z / 2 ) ) -> ( z = ( 2 x. i ) <-> z = ( 2 x. ( z / 2 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							zcn | 
							 |-  ( z e. ZZ -> z e. CC )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z e. CC )  | 
						
						
							| 8 | 
							
								
							 | 
							2cnd | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 e. CC )  | 
						
						
							| 9 | 
							
								
							 | 
							2ne0 | 
							 |-  2 =/= 0  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> 2 =/= 0 )  | 
						
						
							| 11 | 
							
								7 8 10
							 | 
							divcan2d | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> ( 2 x. ( z / 2 ) ) = z )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> z = ( 2 x. ( z / 2 ) ) )  | 
						
						
							| 13 | 
							
								2 5 12
							 | 
							rspcedvd | 
							 |-  ( ( z e. ZZ /\ ( z / 2 ) e. ZZ ) -> E. i e. ZZ z = ( 2 x. i ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ex | 
							 |-  ( z e. ZZ -> ( ( z / 2 ) e. ZZ -> E. i e. ZZ z = ( 2 x. i ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = ( 2 x. i ) -> ( z / 2 ) = ( ( 2 x. i ) / 2 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							zcn | 
							 |-  ( i e. ZZ -> i e. CC )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC )  | 
						
						
							| 18 | 
							
								
							 | 
							2cnd | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC )  | 
						
						
							| 19 | 
							
								9
							 | 
							a1i | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							divcan3d | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							sylan9eqr | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) = i )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> i e. ZZ )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							eqeltrd | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( 2 x. i ) ) -> ( z / 2 ) e. ZZ )  | 
						
						
							| 25 | 
							
								24
							 | 
							rexlimdva2 | 
							 |-  ( z e. ZZ -> ( E. i e. ZZ z = ( 2 x. i ) -> ( z / 2 ) e. ZZ ) )  | 
						
						
							| 26 | 
							
								14 25
							 | 
							impbid | 
							 |-  ( z e. ZZ -> ( ( z / 2 ) e. ZZ <-> E. i e. ZZ z = ( 2 x. i ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							rabbiia | 
							 |-  { z e. ZZ | ( z / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } | 
						
						
							| 28 | 
							
								1 27
							 | 
							eqtri | 
							 |-  Even = { z e. ZZ | E. i e. ZZ z = ( 2 x. i ) } |