| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dff12 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. z E* x x F z ) ) |
| 2 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
|
vex |
|- z e. _V |
| 5 |
3 4
|
breldm |
|- ( x F z -> x e. dom F ) |
| 6 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
| 7 |
6
|
eleq2d |
|- ( F Fn A -> ( x e. dom F <-> x e. A ) ) |
| 8 |
5 7
|
imbitrid |
|- ( F Fn A -> ( x F z -> x e. A ) ) |
| 9 |
|
vex |
|- y e. _V |
| 10 |
9 4
|
breldm |
|- ( y F z -> y e. dom F ) |
| 11 |
6
|
eleq2d |
|- ( F Fn A -> ( y e. dom F <-> y e. A ) ) |
| 12 |
10 11
|
imbitrid |
|- ( F Fn A -> ( y F z -> y e. A ) ) |
| 13 |
8 12
|
anim12d |
|- ( F Fn A -> ( ( x F z /\ y F z ) -> ( x e. A /\ y e. A ) ) ) |
| 14 |
13
|
pm4.71rd |
|- ( F Fn A -> ( ( x F z /\ y F z ) <-> ( ( x e. A /\ y e. A ) /\ ( x F z /\ y F z ) ) ) ) |
| 15 |
|
eqcom |
|- ( z = ( F ` x ) <-> ( F ` x ) = z ) |
| 16 |
|
fnbrfvb |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = z <-> x F z ) ) |
| 17 |
15 16
|
bitrid |
|- ( ( F Fn A /\ x e. A ) -> ( z = ( F ` x ) <-> x F z ) ) |
| 18 |
|
eqcom |
|- ( z = ( F ` y ) <-> ( F ` y ) = z ) |
| 19 |
|
fnbrfvb |
|- ( ( F Fn A /\ y e. A ) -> ( ( F ` y ) = z <-> y F z ) ) |
| 20 |
18 19
|
bitrid |
|- ( ( F Fn A /\ y e. A ) -> ( z = ( F ` y ) <-> y F z ) ) |
| 21 |
17 20
|
bi2anan9 |
|- ( ( ( F Fn A /\ x e. A ) /\ ( F Fn A /\ y e. A ) ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) <-> ( x F z /\ y F z ) ) ) |
| 22 |
21
|
anandis |
|- ( ( F Fn A /\ ( x e. A /\ y e. A ) ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) <-> ( x F z /\ y F z ) ) ) |
| 23 |
22
|
pm5.32da |
|- ( F Fn A -> ( ( ( x e. A /\ y e. A ) /\ ( z = ( F ` x ) /\ z = ( F ` y ) ) ) <-> ( ( x e. A /\ y e. A ) /\ ( x F z /\ y F z ) ) ) ) |
| 24 |
14 23
|
bitr4d |
|- ( F Fn A -> ( ( x F z /\ y F z ) <-> ( ( x e. A /\ y e. A ) /\ ( z = ( F ` x ) /\ z = ( F ` y ) ) ) ) ) |
| 25 |
24
|
imbi1d |
|- ( F Fn A -> ( ( ( x F z /\ y F z ) -> x = y ) <-> ( ( ( x e. A /\ y e. A ) /\ ( z = ( F ` x ) /\ z = ( F ` y ) ) ) -> x = y ) ) ) |
| 26 |
|
impexp |
|- ( ( ( ( x e. A /\ y e. A ) /\ ( z = ( F ` x ) /\ z = ( F ` y ) ) ) -> x = y ) <-> ( ( x e. A /\ y e. A ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) ) |
| 27 |
25 26
|
bitrdi |
|- ( F Fn A -> ( ( ( x F z /\ y F z ) -> x = y ) <-> ( ( x e. A /\ y e. A ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) ) ) |
| 28 |
27
|
albidv |
|- ( F Fn A -> ( A. z ( ( x F z /\ y F z ) -> x = y ) <-> A. z ( ( x e. A /\ y e. A ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) ) ) |
| 29 |
|
19.21v |
|- ( A. z ( ( x e. A /\ y e. A ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) <-> ( ( x e. A /\ y e. A ) -> A. z ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) ) |
| 30 |
|
19.23v |
|- ( A. z ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) <-> ( E. z ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) |
| 31 |
|
fvex |
|- ( F ` x ) e. _V |
| 32 |
31
|
eqvinc |
|- ( ( F ` x ) = ( F ` y ) <-> E. z ( z = ( F ` x ) /\ z = ( F ` y ) ) ) |
| 33 |
32
|
imbi1i |
|- ( ( ( F ` x ) = ( F ` y ) -> x = y ) <-> ( E. z ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) |
| 34 |
30 33
|
bitr4i |
|- ( A. z ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 35 |
34
|
imbi2i |
|- ( ( ( x e. A /\ y e. A ) -> A. z ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) <-> ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 36 |
29 35
|
bitri |
|- ( A. z ( ( x e. A /\ y e. A ) -> ( ( z = ( F ` x ) /\ z = ( F ` y ) ) -> x = y ) ) <-> ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 37 |
28 36
|
bitrdi |
|- ( F Fn A -> ( A. z ( ( x F z /\ y F z ) -> x = y ) <-> ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) |
| 38 |
37
|
2albidv |
|- ( F Fn A -> ( A. x A. y A. z ( ( x F z /\ y F z ) -> x = y ) <-> A. x A. y ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) ) |
| 39 |
|
breq1 |
|- ( x = y -> ( x F z <-> y F z ) ) |
| 40 |
39
|
mo4 |
|- ( E* x x F z <-> A. x A. y ( ( x F z /\ y F z ) -> x = y ) ) |
| 41 |
40
|
albii |
|- ( A. z E* x x F z <-> A. z A. x A. y ( ( x F z /\ y F z ) -> x = y ) ) |
| 42 |
|
alrot3 |
|- ( A. z A. x A. y ( ( x F z /\ y F z ) -> x = y ) <-> A. x A. y A. z ( ( x F z /\ y F z ) -> x = y ) ) |
| 43 |
41 42
|
bitri |
|- ( A. z E* x x F z <-> A. x A. y A. z ( ( x F z /\ y F z ) -> x = y ) ) |
| 44 |
|
r2al |
|- ( A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) <-> A. x A. y ( ( x e. A /\ y e. A ) -> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 45 |
38 43 44
|
3bitr4g |
|- ( F Fn A -> ( A. z E* x x F z <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 46 |
2 45
|
syl |
|- ( F : A --> B -> ( A. z E* x x F z <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 47 |
46
|
pm5.32i |
|- ( ( F : A --> B /\ A. z E* x x F z ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 48 |
1 47
|
bitri |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |