Step |
Hyp |
Ref |
Expression |
1 |
|
dff13f.1 |
|- F/_ x F |
2 |
|
dff13f.2 |
|- F/_ y F |
3 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) ) |
4 |
|
nfcv |
|- F/_ y w |
5 |
2 4
|
nffv |
|- F/_ y ( F ` w ) |
6 |
|
nfcv |
|- F/_ y v |
7 |
2 6
|
nffv |
|- F/_ y ( F ` v ) |
8 |
5 7
|
nfeq |
|- F/ y ( F ` w ) = ( F ` v ) |
9 |
|
nfv |
|- F/ y w = v |
10 |
8 9
|
nfim |
|- F/ y ( ( F ` w ) = ( F ` v ) -> w = v ) |
11 |
|
nfv |
|- F/ v ( ( F ` w ) = ( F ` y ) -> w = y ) |
12 |
|
fveq2 |
|- ( v = y -> ( F ` v ) = ( F ` y ) ) |
13 |
12
|
eqeq2d |
|- ( v = y -> ( ( F ` w ) = ( F ` v ) <-> ( F ` w ) = ( F ` y ) ) ) |
14 |
|
equequ2 |
|- ( v = y -> ( w = v <-> w = y ) ) |
15 |
13 14
|
imbi12d |
|- ( v = y -> ( ( ( F ` w ) = ( F ` v ) -> w = v ) <-> ( ( F ` w ) = ( F ` y ) -> w = y ) ) ) |
16 |
10 11 15
|
cbvralw |
|- ( A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
17 |
16
|
ralbii |
|- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
18 |
|
nfcv |
|- F/_ x A |
19 |
|
nfcv |
|- F/_ x w |
20 |
1 19
|
nffv |
|- F/_ x ( F ` w ) |
21 |
|
nfcv |
|- F/_ x y |
22 |
1 21
|
nffv |
|- F/_ x ( F ` y ) |
23 |
20 22
|
nfeq |
|- F/ x ( F ` w ) = ( F ` y ) |
24 |
|
nfv |
|- F/ x w = y |
25 |
23 24
|
nfim |
|- F/ x ( ( F ` w ) = ( F ` y ) -> w = y ) |
26 |
18 25
|
nfralw |
|- F/ x A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) |
27 |
|
nfv |
|- F/ w A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) |
28 |
|
fveqeq2 |
|- ( w = x -> ( ( F ` w ) = ( F ` y ) <-> ( F ` x ) = ( F ` y ) ) ) |
29 |
|
equequ1 |
|- ( w = x -> ( w = y <-> x = y ) ) |
30 |
28 29
|
imbi12d |
|- ( w = x -> ( ( ( F ` w ) = ( F ` y ) -> w = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
31 |
30
|
ralbidv |
|- ( w = x -> ( A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
32 |
26 27 31
|
cbvralw |
|- ( A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
33 |
17 32
|
bitri |
|- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
34 |
33
|
anbi2i |
|- ( ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
35 |
3 34
|
bitri |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |