| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dff13f.1 |
|- F/_ x F |
| 2 |
|
dff13f.2 |
|- F/_ y F |
| 3 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) ) |
| 4 |
|
nfcv |
|- F/_ y w |
| 5 |
2 4
|
nffv |
|- F/_ y ( F ` w ) |
| 6 |
|
nfcv |
|- F/_ y v |
| 7 |
2 6
|
nffv |
|- F/_ y ( F ` v ) |
| 8 |
5 7
|
nfeq |
|- F/ y ( F ` w ) = ( F ` v ) |
| 9 |
|
nfv |
|- F/ y w = v |
| 10 |
8 9
|
nfim |
|- F/ y ( ( F ` w ) = ( F ` v ) -> w = v ) |
| 11 |
|
nfv |
|- F/ v ( ( F ` w ) = ( F ` y ) -> w = y ) |
| 12 |
|
fveq2 |
|- ( v = y -> ( F ` v ) = ( F ` y ) ) |
| 13 |
12
|
eqeq2d |
|- ( v = y -> ( ( F ` w ) = ( F ` v ) <-> ( F ` w ) = ( F ` y ) ) ) |
| 14 |
|
equequ2 |
|- ( v = y -> ( w = v <-> w = y ) ) |
| 15 |
13 14
|
imbi12d |
|- ( v = y -> ( ( ( F ` w ) = ( F ` v ) -> w = v ) <-> ( ( F ` w ) = ( F ` y ) -> w = y ) ) ) |
| 16 |
10 11 15
|
cbvralw |
|- ( A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
| 17 |
16
|
ralbii |
|- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) ) |
| 18 |
|
nfcv |
|- F/_ x A |
| 19 |
|
nfcv |
|- F/_ x w |
| 20 |
1 19
|
nffv |
|- F/_ x ( F ` w ) |
| 21 |
|
nfcv |
|- F/_ x y |
| 22 |
1 21
|
nffv |
|- F/_ x ( F ` y ) |
| 23 |
20 22
|
nfeq |
|- F/ x ( F ` w ) = ( F ` y ) |
| 24 |
|
nfv |
|- F/ x w = y |
| 25 |
23 24
|
nfim |
|- F/ x ( ( F ` w ) = ( F ` y ) -> w = y ) |
| 26 |
18 25
|
nfralw |
|- F/ x A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) |
| 27 |
|
nfv |
|- F/ w A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) |
| 28 |
|
fveqeq2 |
|- ( w = x -> ( ( F ` w ) = ( F ` y ) <-> ( F ` x ) = ( F ` y ) ) ) |
| 29 |
|
equequ1 |
|- ( w = x -> ( w = y <-> x = y ) ) |
| 30 |
28 29
|
imbi12d |
|- ( w = x -> ( ( ( F ` w ) = ( F ` y ) -> w = y ) <-> ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 31 |
30
|
ralbidv |
|- ( w = x -> ( A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 32 |
26 27 31
|
cbvralw |
|- ( A. w e. A A. y e. A ( ( F ` w ) = ( F ` y ) -> w = y ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 33 |
17 32
|
bitri |
|- ( A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) <-> A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) |
| 34 |
33
|
anbi2i |
|- ( ( F : A --> B /\ A. w e. A A. v e. A ( ( F ` w ) = ( F ` v ) -> w = v ) ) <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
| 35 |
3 34
|
bitri |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |