| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-f1o |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
| 2 |
|
dffo2 |
|- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
| 3 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
| 4 |
3
|
biantrurd |
|- ( F : A -1-1-> B -> ( ran F = B <-> ( F : A --> B /\ ran F = B ) ) ) |
| 5 |
2 4
|
bitr4id |
|- ( F : A -1-1-> B -> ( F : A -onto-> B <-> ran F = B ) ) |
| 6 |
5
|
pm5.32i |
|- ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( F : A -1-1-> B /\ ran F = B ) ) |
| 7 |
1 6
|
bitri |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ ran F = B ) ) |