Metamath Proof Explorer


Theorem dff1o6

Description: A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008)

Ref Expression
Assertion dff1o6
|- ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )

Proof

Step Hyp Ref Expression
1 df-f1o
 |-  ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) )
2 dff13
 |-  ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )
3 df-fo
 |-  ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) )
4 2 3 anbi12i
 |-  ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) )
5 df-3an
 |-  ( ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )
6 eqimss
 |-  ( ran F = B -> ran F C_ B )
7 6 anim2i
 |-  ( ( F Fn A /\ ran F = B ) -> ( F Fn A /\ ran F C_ B ) )
8 df-f
 |-  ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) )
9 7 8 sylibr
 |-  ( ( F Fn A /\ ran F = B ) -> F : A --> B )
10 9 pm4.71ri
 |-  ( ( F Fn A /\ ran F = B ) <-> ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) )
11 10 anbi1i
 |-  ( ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )
12 an32
 |-  ( ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) )
13 5 11 12 3bitrri
 |-  ( ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )
14 1 4 13 3bitri
 |-  ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) )