| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-f1o |  |-  ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) | 
						
							| 2 |  | dff13 |  |-  ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 3 |  | df-fo |  |-  ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) | 
						
							| 4 | 2 3 | anbi12i |  |-  ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) | 
						
							| 5 |  | df-3an |  |-  ( ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 6 |  | eqimss |  |-  ( ran F = B -> ran F C_ B ) | 
						
							| 7 | 6 | anim2i |  |-  ( ( F Fn A /\ ran F = B ) -> ( F Fn A /\ ran F C_ B ) ) | 
						
							| 8 |  | df-f |  |-  ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( ( F Fn A /\ ran F = B ) -> F : A --> B ) | 
						
							| 10 | 9 | pm4.71ri |  |-  ( ( F Fn A /\ ran F = B ) <-> ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) ) | 
						
							| 11 | 10 | anbi1i |  |-  ( ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 12 |  | an32 |  |-  ( ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) | 
						
							| 13 | 5 11 12 | 3bitrri |  |-  ( ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) | 
						
							| 14 | 1 4 13 | 3bitri |  |-  ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |