Step |
Hyp |
Ref |
Expression |
1 |
|
df-f1o |
|- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
2 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
3 |
|
df-fo |
|- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
4 |
2 3
|
anbi12i |
|- ( ( F : A -1-1-> B /\ F : A -onto-> B ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) |
5 |
|
df-3an |
|- ( ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
6 |
|
eqimss |
|- ( ran F = B -> ran F C_ B ) |
7 |
6
|
anim2i |
|- ( ( F Fn A /\ ran F = B ) -> ( F Fn A /\ ran F C_ B ) ) |
8 |
|
df-f |
|- ( F : A --> B <-> ( F Fn A /\ ran F C_ B ) ) |
9 |
7 8
|
sylibr |
|- ( ( F Fn A /\ ran F = B ) -> F : A --> B ) |
10 |
9
|
pm4.71ri |
|- ( ( F Fn A /\ ran F = B ) <-> ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) ) |
11 |
10
|
anbi1i |
|- ( ( ( F Fn A /\ ran F = B ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
12 |
|
an32 |
|- ( ( ( F : A --> B /\ ( F Fn A /\ ran F = B ) ) /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) <-> ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) ) |
13 |
5 11 12
|
3bitrri |
|- ( ( ( F : A --> B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) /\ ( F Fn A /\ ran F = B ) ) <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |
14 |
1 4 13
|
3bitri |
|- ( F : A -1-1-onto-> B <-> ( F Fn A /\ ran F = B /\ A. x e. A A. y e. A ( ( F ` x ) = ( F ` y ) -> x = y ) ) ) |