| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imor |
|- ( ( x e. dom card -> x e. Fin ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
| 2 |
|
isfin7-2 |
|- ( x e. _V -> ( x e. Fin7 <-> ( x e. dom card -> x e. Fin ) ) ) |
| 3 |
2
|
elv |
|- ( x e. Fin7 <-> ( x e. dom card -> x e. Fin ) ) |
| 4 |
|
elun |
|- ( x e. ( Fin u. ( _V \ dom card ) ) <-> ( x e. Fin \/ x e. ( _V \ dom card ) ) ) |
| 5 |
|
orcom |
|- ( ( x e. Fin \/ x e. ( _V \ dom card ) ) <-> ( x e. ( _V \ dom card ) \/ x e. Fin ) ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
|
eldif |
|- ( x e. ( _V \ dom card ) <-> ( x e. _V /\ -. x e. dom card ) ) |
| 8 |
6 7
|
mpbiran |
|- ( x e. ( _V \ dom card ) <-> -. x e. dom card ) |
| 9 |
8
|
orbi1i |
|- ( ( x e. ( _V \ dom card ) \/ x e. Fin ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
| 10 |
4 5 9
|
3bitri |
|- ( x e. ( Fin u. ( _V \ dom card ) ) <-> ( -. x e. dom card \/ x e. Fin ) ) |
| 11 |
1 3 10
|
3bitr4i |
|- ( x e. Fin7 <-> x e. ( Fin u. ( _V \ dom card ) ) ) |
| 12 |
11
|
eqriv |
|- Fin7 = ( Fin u. ( _V \ dom card ) ) |