| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnrel |
|- ( F Fn A -> Rel F ) |
| 2 |
|
dfrel4v |
|- ( Rel F <-> F = { <. x , y >. | x F y } ) |
| 3 |
1 2
|
sylib |
|- ( F Fn A -> F = { <. x , y >. | x F y } ) |
| 4 |
|
fnbr |
|- ( ( F Fn A /\ x F y ) -> x e. A ) |
| 5 |
4
|
ex |
|- ( F Fn A -> ( x F y -> x e. A ) ) |
| 6 |
5
|
pm4.71rd |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ x F y ) ) ) |
| 7 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
| 8 |
|
fnbrfvb |
|- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = y <-> x F y ) ) |
| 9 |
7 8
|
bitrid |
|- ( ( F Fn A /\ x e. A ) -> ( y = ( F ` x ) <-> x F y ) ) |
| 10 |
9
|
pm5.32da |
|- ( F Fn A -> ( ( x e. A /\ y = ( F ` x ) ) <-> ( x e. A /\ x F y ) ) ) |
| 11 |
6 10
|
bitr4d |
|- ( F Fn A -> ( x F y <-> ( x e. A /\ y = ( F ` x ) ) ) ) |
| 12 |
11
|
opabbidv |
|- ( F Fn A -> { <. x , y >. | x F y } = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 13 |
3 12
|
eqtrd |
|- ( F Fn A -> F = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } ) |
| 14 |
|
df-mpt |
|- ( x e. A |-> ( F ` x ) ) = { <. x , y >. | ( x e. A /\ y = ( F ` x ) ) } |
| 15 |
13 14
|
eqtr4di |
|- ( F Fn A -> F = ( x e. A |-> ( F ` x ) ) ) |
| 16 |
|
fvex |
|- ( F ` x ) e. _V |
| 17 |
|
eqid |
|- ( x e. A |-> ( F ` x ) ) = ( x e. A |-> ( F ` x ) ) |
| 18 |
16 17
|
fnmpti |
|- ( x e. A |-> ( F ` x ) ) Fn A |
| 19 |
|
fneq1 |
|- ( F = ( x e. A |-> ( F ` x ) ) -> ( F Fn A <-> ( x e. A |-> ( F ` x ) ) Fn A ) ) |
| 20 |
18 19
|
mpbiri |
|- ( F = ( x e. A |-> ( F ` x ) ) -> F Fn A ) |
| 21 |
15 20
|
impbii |
|- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) ) |