Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffo2 | |- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 2 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 3 | 1 2 | jca | |- ( F : A -onto-> B -> ( F : A --> B /\ ran F = B ) ) |
| 4 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 5 | df-fo | |- ( F : A -onto-> B <-> ( F Fn A /\ ran F = B ) ) |
|
| 6 | 5 | biimpri | |- ( ( F Fn A /\ ran F = B ) -> F : A -onto-> B ) |
| 7 | 4 6 | sylan | |- ( ( F : A --> B /\ ran F = B ) -> F : A -onto-> B ) |
| 8 | 3 7 | impbii | |- ( F : A -onto-> B <-> ( F : A --> B /\ ran F = B ) ) |