Metamath Proof Explorer


Theorem dffr2

Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015)

Ref Expression
Assertion dffr2
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) )

Proof

Step Hyp Ref Expression
1 df-fr
 |-  ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )
2 rabeq0
 |-  ( { z e. x | z R y } = (/) <-> A. z e. x -. z R y )
3 2 rexbii
 |-  ( E. y e. x { z e. x | z R y } = (/) <-> E. y e. x A. z e. x -. z R y )
4 3 imbi2i
 |-  ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )
5 4 albii
 |-  ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) )
6 1 5 bitr4i
 |-  ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) )