Step |
Hyp |
Ref |
Expression |
1 |
|
dffr2 |
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
2 |
|
iniseg |
|- ( y e. _V -> ( `' R " { y } ) = { z | z R y } ) |
3 |
2
|
elv |
|- ( `' R " { y } ) = { z | z R y } |
4 |
3
|
ineq2i |
|- ( x i^i ( `' R " { y } ) ) = ( x i^i { z | z R y } ) |
5 |
|
dfrab3 |
|- { z e. x | z R y } = ( x i^i { z | z R y } ) |
6 |
4 5
|
eqtr4i |
|- ( x i^i ( `' R " { y } ) ) = { z e. x | z R y } |
7 |
6
|
eqeq1i |
|- ( ( x i^i ( `' R " { y } ) ) = (/) <-> { z e. x | z R y } = (/) ) |
8 |
7
|
rexbii |
|- ( E. y e. x ( x i^i ( `' R " { y } ) ) = (/) <-> E. y e. x { z e. x | z R y } = (/) ) |
9 |
8
|
imbi2i |
|- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
10 |
9
|
albii |
|- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
11 |
1 10
|
bitr4i |
|- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |