| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fun |
|- ( Fun A <-> ( Rel A /\ ( A o. `' A ) C_ _I ) ) |
| 2 |
|
cotrg |
|- ( ( A o. `' A ) C_ _I <-> A. y A. x A. z ( ( y `' A x /\ x A z ) -> y _I z ) ) |
| 3 |
|
breq1 |
|- ( y = w -> ( y `' A x <-> w `' A x ) ) |
| 4 |
3
|
anbi1d |
|- ( y = w -> ( ( y `' A x /\ x A z ) <-> ( w `' A x /\ x A z ) ) ) |
| 5 |
|
breq1 |
|- ( y = w -> ( y _I z <-> w _I z ) ) |
| 6 |
4 5
|
imbi12d |
|- ( y = w -> ( ( ( y `' A x /\ x A z ) -> y _I z ) <-> ( ( w `' A x /\ x A z ) -> w _I z ) ) ) |
| 7 |
6
|
albidv |
|- ( y = w -> ( A. z ( ( y `' A x /\ x A z ) -> y _I z ) <-> A. z ( ( w `' A x /\ x A z ) -> w _I z ) ) ) |
| 8 |
|
breq2 |
|- ( x = w -> ( y `' A x <-> y `' A w ) ) |
| 9 |
|
breq1 |
|- ( x = w -> ( x A z <-> w A z ) ) |
| 10 |
8 9
|
anbi12d |
|- ( x = w -> ( ( y `' A x /\ x A z ) <-> ( y `' A w /\ w A z ) ) ) |
| 11 |
10
|
imbi1d |
|- ( x = w -> ( ( ( y `' A x /\ x A z ) -> y _I z ) <-> ( ( y `' A w /\ w A z ) -> y _I z ) ) ) |
| 12 |
11
|
albidv |
|- ( x = w -> ( A. z ( ( y `' A x /\ x A z ) -> y _I z ) <-> A. z ( ( y `' A w /\ w A z ) -> y _I z ) ) ) |
| 13 |
7 12
|
alcomw |
|- ( A. y A. x A. z ( ( y `' A x /\ x A z ) -> y _I z ) <-> A. x A. y A. z ( ( y `' A x /\ x A z ) -> y _I z ) ) |
| 14 |
|
vex |
|- y e. _V |
| 15 |
|
vex |
|- x e. _V |
| 16 |
14 15
|
brcnv |
|- ( y `' A x <-> x A y ) |
| 17 |
16
|
anbi1i |
|- ( ( y `' A x /\ x A z ) <-> ( x A y /\ x A z ) ) |
| 18 |
|
vex |
|- z e. _V |
| 19 |
18
|
ideq |
|- ( y _I z <-> y = z ) |
| 20 |
17 19
|
imbi12i |
|- ( ( ( y `' A x /\ x A z ) -> y _I z ) <-> ( ( x A y /\ x A z ) -> y = z ) ) |
| 21 |
20
|
3albii |
|- ( A. x A. y A. z ( ( y `' A x /\ x A z ) -> y _I z ) <-> A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) |
| 22 |
13 21
|
bitri |
|- ( A. y A. x A. z ( ( y `' A x /\ x A z ) -> y _I z ) <-> A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) |
| 23 |
2 22
|
bitri |
|- ( ( A o. `' A ) C_ _I <-> A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) |
| 24 |
23
|
anbi2i |
|- ( ( Rel A /\ ( A o. `' A ) C_ _I ) <-> ( Rel A /\ A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) ) |
| 25 |
1 24
|
bitri |
|- ( Fun A <-> ( Rel A /\ A. x A. y A. z ( ( x A y /\ x A z ) -> y = z ) ) ) |