Metamath Proof Explorer


Theorem dffun6OLD

Description: Obsolete version of dffun6 as of 19-Dec-2024. (Contributed by NM, 9-Mar-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dffun6OLD
|- ( Fun F <-> ( Rel F /\ A. x E* y x F y ) )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x F
2 nfcv
 |-  F/_ y F
3 1 2 dffun6f
 |-  ( Fun F <-> ( Rel F /\ A. x E* y x F y ) )