Step |
Hyp |
Ref |
Expression |
1 |
|
dffun6f.1 |
|- F/_ x A |
2 |
|
dffun6f.2 |
|- F/_ y A |
3 |
|
dffun3 |
|- ( Fun A <-> ( Rel A /\ A. w E. u A. v ( w A v -> v = u ) ) ) |
4 |
|
nfcv |
|- F/_ y w |
5 |
|
nfcv |
|- F/_ y v |
6 |
4 2 5
|
nfbr |
|- F/ y w A v |
7 |
|
nfv |
|- F/ v w A y |
8 |
|
breq2 |
|- ( v = y -> ( w A v <-> w A y ) ) |
9 |
6 7 8
|
cbvmow |
|- ( E* v w A v <-> E* y w A y ) |
10 |
9
|
albii |
|- ( A. w E* v w A v <-> A. w E* y w A y ) |
11 |
|
df-mo |
|- ( E* v w A v <-> E. u A. v ( w A v -> v = u ) ) |
12 |
11
|
albii |
|- ( A. w E* v w A v <-> A. w E. u A. v ( w A v -> v = u ) ) |
13 |
|
nfcv |
|- F/_ x w |
14 |
|
nfcv |
|- F/_ x y |
15 |
13 1 14
|
nfbr |
|- F/ x w A y |
16 |
15
|
nfmov |
|- F/ x E* y w A y |
17 |
|
nfv |
|- F/ w E* y x A y |
18 |
|
breq1 |
|- ( w = x -> ( w A y <-> x A y ) ) |
19 |
18
|
mobidv |
|- ( w = x -> ( E* y w A y <-> E* y x A y ) ) |
20 |
16 17 19
|
cbvalv1 |
|- ( A. w E* y w A y <-> A. x E* y x A y ) |
21 |
10 12 20
|
3bitr3ri |
|- ( A. x E* y x A y <-> A. w E. u A. v ( w A v -> v = u ) ) |
22 |
21
|
anbi2i |
|- ( ( Rel A /\ A. x E* y x A y ) <-> ( Rel A /\ A. w E. u A. v ( w A v -> v = u ) ) ) |
23 |
3 22
|
bitr4i |
|- ( Fun A <-> ( Rel A /\ A. x E* y x A y ) ) |