| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
| 2 |
1
|
nn0ge0d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> 0 <_ ( M gcd N ) ) |
| 3 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 4 |
|
3anass |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( e e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
| 5 |
4
|
biancomi |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) ) |
| 6 |
|
dvdsgcd |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
| 7 |
5 6
|
sylbir |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
| 8 |
7
|
ralrimiva |
|- ( ( M e. ZZ /\ N e. ZZ ) -> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
| 9 |
2 3 8
|
3jca |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 10 |
9
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 11 |
|
breq2 |
|- ( D = ( M gcd N ) -> ( 0 <_ D <-> 0 <_ ( M gcd N ) ) ) |
| 12 |
|
breq1 |
|- ( D = ( M gcd N ) -> ( D || M <-> ( M gcd N ) || M ) ) |
| 13 |
|
breq1 |
|- ( D = ( M gcd N ) -> ( D || N <-> ( M gcd N ) || N ) ) |
| 14 |
12 13
|
anbi12d |
|- ( D = ( M gcd N ) -> ( ( D || M /\ D || N ) <-> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) ) |
| 15 |
|
breq2 |
|- ( D = ( M gcd N ) -> ( e || D <-> e || ( M gcd N ) ) ) |
| 16 |
15
|
imbi2d |
|- ( D = ( M gcd N ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 17 |
16
|
ralbidv |
|- ( D = ( M gcd N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
| 18 |
11 14 17
|
3anbi123d |
|- ( D = ( M gcd N ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
| 19 |
18
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
| 20 |
10 19
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) |
| 21 |
|
gcdval |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 23 |
|
iftrue |
|- ( ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
| 24 |
23
|
adantr |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
| 25 |
|
breq2 |
|- ( M = 0 -> ( D || M <-> D || 0 ) ) |
| 26 |
|
breq2 |
|- ( N = 0 -> ( D || N <-> D || 0 ) ) |
| 27 |
25 26
|
bi2anan9 |
|- ( ( M = 0 /\ N = 0 ) -> ( ( D || M /\ D || N ) <-> ( D || 0 /\ D || 0 ) ) ) |
| 28 |
|
breq2 |
|- ( M = 0 -> ( e || M <-> e || 0 ) ) |
| 29 |
|
breq2 |
|- ( N = 0 -> ( e || N <-> e || 0 ) ) |
| 30 |
28 29
|
bi2anan9 |
|- ( ( M = 0 /\ N = 0 ) -> ( ( e || M /\ e || N ) <-> ( e || 0 /\ e || 0 ) ) ) |
| 31 |
30
|
imbi1d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
| 32 |
31
|
ralbidv |
|- ( ( M = 0 /\ N = 0 ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
| 33 |
27 32
|
3anbi23d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) ) |
| 34 |
|
dvdszrcl |
|- ( D || 0 -> ( D e. ZZ /\ 0 e. ZZ ) ) |
| 35 |
|
dvds0 |
|- ( e e. ZZ -> e || 0 ) |
| 36 |
35 35
|
jca |
|- ( e e. ZZ -> ( e || 0 /\ e || 0 ) ) |
| 37 |
36
|
adantl |
|- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( e || 0 /\ e || 0 ) ) |
| 38 |
|
pm5.5 |
|- ( ( e || 0 /\ e || 0 ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
| 39 |
37 38
|
syl |
|- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
| 40 |
39
|
ralbidva |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) <-> A. e e. ZZ e || D ) ) |
| 41 |
|
0z |
|- 0 e. ZZ |
| 42 |
|
breq1 |
|- ( e = 0 -> ( e || D <-> 0 || D ) ) |
| 43 |
42
|
rspcv |
|- ( 0 e. ZZ -> ( A. e e. ZZ e || D -> 0 || D ) ) |
| 44 |
41 43
|
ax-mp |
|- ( A. e e. ZZ e || D -> 0 || D ) |
| 45 |
|
0dvds |
|- ( D e. ZZ -> ( 0 || D <-> D = 0 ) ) |
| 46 |
45
|
biimpd |
|- ( D e. ZZ -> ( 0 || D -> D = 0 ) ) |
| 47 |
|
eqcom |
|- ( 0 = D <-> D = 0 ) |
| 48 |
46 47
|
imbitrrdi |
|- ( D e. ZZ -> ( 0 || D -> 0 = D ) ) |
| 49 |
44 48
|
syl5 |
|- ( D e. ZZ -> ( A. e e. ZZ e || D -> 0 = D ) ) |
| 50 |
49
|
adantr |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ e || D -> 0 = D ) ) |
| 51 |
40 50
|
sylbid |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) |
| 52 |
51
|
ex |
|- ( D e. ZZ -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 53 |
52
|
adantr |
|- ( ( D e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 54 |
34 53
|
syl |
|- ( D || 0 -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 55 |
54
|
adantr |
|- ( ( D || 0 /\ D || 0 ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
| 56 |
55
|
3imp21 |
|- ( ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) -> 0 = D ) |
| 57 |
33 56
|
biimtrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> 0 = D ) ) |
| 58 |
57
|
adantld |
|- ( ( M = 0 /\ N = 0 ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> 0 = D ) ) |
| 59 |
58
|
imp |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> 0 = D ) |
| 60 |
24 59
|
eqtrd |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 61 |
|
iffalse |
|- ( -. ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
| 62 |
61
|
adantr |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
| 63 |
|
ltso |
|- < Or RR |
| 64 |
63
|
a1i |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> < Or RR ) |
| 65 |
|
dvdszrcl |
|- ( D || M -> ( D e. ZZ /\ M e. ZZ ) ) |
| 66 |
65
|
simpld |
|- ( D || M -> D e. ZZ ) |
| 67 |
66
|
zred |
|- ( D || M -> D e. RR ) |
| 68 |
67
|
adantr |
|- ( ( D || M /\ D || N ) -> D e. RR ) |
| 69 |
68
|
3ad2ant2 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> D e. RR ) |
| 70 |
69
|
ad2antll |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> D e. RR ) |
| 71 |
|
breq1 |
|- ( n = y -> ( n || M <-> y || M ) ) |
| 72 |
|
breq1 |
|- ( n = y -> ( n || N <-> y || N ) ) |
| 73 |
71 72
|
anbi12d |
|- ( n = y -> ( ( n || M /\ n || N ) <-> ( y || M /\ y || N ) ) ) |
| 74 |
73
|
elrab |
|- ( y e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( y e. ZZ /\ ( y || M /\ y || N ) ) ) |
| 75 |
|
breq1 |
|- ( e = y -> ( e || M <-> y || M ) ) |
| 76 |
|
breq1 |
|- ( e = y -> ( e || N <-> y || N ) ) |
| 77 |
75 76
|
anbi12d |
|- ( e = y -> ( ( e || M /\ e || N ) <-> ( y || M /\ y || N ) ) ) |
| 78 |
|
breq1 |
|- ( e = y -> ( e || D <-> y || D ) ) |
| 79 |
77 78
|
imbi12d |
|- ( e = y -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( y || M /\ y || N ) -> y || D ) ) ) |
| 80 |
79
|
rspcv |
|- ( y e. ZZ -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( y || M /\ y || N ) -> y || D ) ) ) |
| 81 |
80
|
com23 |
|- ( y e. ZZ -> ( ( y || M /\ y || N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) ) |
| 82 |
81
|
imp |
|- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
| 83 |
82
|
ad2antrr |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
| 84 |
|
elnn0z |
|- ( D e. NN0 <-> ( D e. ZZ /\ 0 <_ D ) ) |
| 85 |
84
|
simplbi2 |
|- ( D e. ZZ -> ( 0 <_ D -> D e. NN0 ) ) |
| 86 |
85
|
adantr |
|- ( ( D e. ZZ /\ M e. ZZ ) -> ( 0 <_ D -> D e. NN0 ) ) |
| 87 |
65 86
|
syl |
|- ( D || M -> ( 0 <_ D -> D e. NN0 ) ) |
| 88 |
87
|
adantr |
|- ( ( D || M /\ D || N ) -> ( 0 <_ D -> D e. NN0 ) ) |
| 89 |
88
|
impcom |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN0 ) |
| 90 |
|
simp-4l |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> y e. ZZ ) |
| 91 |
|
elnn0 |
|- ( D e. NN0 <-> ( D e. NN \/ D = 0 ) ) |
| 92 |
|
2a1 |
|- ( D e. NN -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 93 |
|
breq1 |
|- ( D = 0 -> ( D || M <-> 0 || M ) ) |
| 94 |
|
breq1 |
|- ( D = 0 -> ( D || N <-> 0 || N ) ) |
| 95 |
93 94
|
anbi12d |
|- ( D = 0 -> ( ( D || M /\ D || N ) <-> ( 0 || M /\ 0 || N ) ) ) |
| 96 |
95
|
anbi2d |
|- ( D = 0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
| 97 |
96
|
adantr |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
| 98 |
|
ianor |
|- ( -. ( M = 0 /\ N = 0 ) <-> ( -. M = 0 \/ -. N = 0 ) ) |
| 99 |
|
dvdszrcl |
|- ( 0 || M -> ( 0 e. ZZ /\ M e. ZZ ) ) |
| 100 |
|
0dvds |
|- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
| 101 |
|
pm2.24 |
|- ( M = 0 -> ( -. M = 0 -> D e. NN ) ) |
| 102 |
100 101
|
biimtrdi |
|- ( M e. ZZ -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
| 103 |
102
|
adantl |
|- ( ( 0 e. ZZ /\ M e. ZZ ) -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
| 104 |
99 103
|
mpcom |
|- ( 0 || M -> ( -. M = 0 -> D e. NN ) ) |
| 105 |
104
|
adantr |
|- ( ( 0 || M /\ 0 || N ) -> ( -. M = 0 -> D e. NN ) ) |
| 106 |
105
|
com12 |
|- ( -. M = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 107 |
|
dvdszrcl |
|- ( 0 || N -> ( 0 e. ZZ /\ N e. ZZ ) ) |
| 108 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
| 109 |
|
pm2.24 |
|- ( N = 0 -> ( -. N = 0 -> D e. NN ) ) |
| 110 |
108 109
|
biimtrdi |
|- ( N e. ZZ -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
| 111 |
110
|
adantl |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
| 112 |
107 111
|
mpcom |
|- ( 0 || N -> ( -. N = 0 -> D e. NN ) ) |
| 113 |
112
|
adantl |
|- ( ( 0 || M /\ 0 || N ) -> ( -. N = 0 -> D e. NN ) ) |
| 114 |
113
|
com12 |
|- ( -. N = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 115 |
106 114
|
jaoi |
|- ( ( -. M = 0 \/ -. N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 116 |
98 115
|
sylbi |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
| 117 |
116
|
adantld |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
| 118 |
117
|
ad2antll |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
| 119 |
97 118
|
sylbid |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
| 120 |
119
|
ex |
|- ( D = 0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 121 |
92 120
|
jaoi |
|- ( ( D e. NN \/ D = 0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 122 |
91 121
|
sylbi |
|- ( D e. NN0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
| 123 |
122
|
impcom |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
| 124 |
123
|
imp |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> D e. NN ) |
| 125 |
|
dvdsle |
|- ( ( y e. ZZ /\ D e. NN ) -> ( y || D -> y <_ D ) ) |
| 126 |
90 124 125
|
syl2anc |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> ( y || D -> y <_ D ) ) |
| 127 |
126
|
exp31 |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> y <_ D ) ) ) ) |
| 128 |
127
|
com14 |
|- ( y || D -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) ) |
| 129 |
128
|
imp |
|- ( ( y || D /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) |
| 130 |
129
|
impcom |
|- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) |
| 131 |
130
|
imp |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> y <_ D ) |
| 132 |
|
zre |
|- ( y e. ZZ -> y e. RR ) |
| 133 |
132
|
ad2antrr |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y e. RR ) |
| 134 |
68
|
ad2antlr |
|- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> D e. RR ) |
| 135 |
|
lenlt |
|- ( ( y e. RR /\ D e. RR ) -> ( y <_ D <-> -. D < y ) ) |
| 136 |
133 134 135
|
syl2anr |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( y <_ D <-> -. D < y ) ) |
| 137 |
131 136
|
mpbid |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> -. D < y ) |
| 138 |
137
|
exp31 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( y || D /\ D e. NN0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
| 139 |
89 138
|
mpan2d |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
| 140 |
139
|
com13 |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 141 |
140
|
adantr |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 142 |
83 141
|
syld |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
| 143 |
142
|
com13 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) ) |
| 144 |
143
|
3impia |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) |
| 145 |
144
|
com12 |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> -. D < y ) ) |
| 146 |
145
|
expimpd |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> -. D < y ) ) |
| 147 |
146
|
expimpd |
|- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
| 148 |
74 147
|
sylbi |
|- ( y e. { n e. ZZ | ( n || M /\ n || N ) } -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
| 149 |
148
|
impcom |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ y e. { n e. ZZ | ( n || M /\ n || N ) } ) -> -. D < y ) |
| 150 |
66
|
adantr |
|- ( ( D || M /\ D || N ) -> D e. ZZ ) |
| 151 |
150
|
ancri |
|- ( ( D || M /\ D || N ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 152 |
151
|
3ad2ant2 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 153 |
152
|
ad2antll |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 154 |
153
|
adantr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 155 |
|
breq1 |
|- ( n = D -> ( n || M <-> D || M ) ) |
| 156 |
|
breq1 |
|- ( n = D -> ( n || N <-> D || N ) ) |
| 157 |
155 156
|
anbi12d |
|- ( n = D -> ( ( n || M /\ n || N ) <-> ( D || M /\ D || N ) ) ) |
| 158 |
157
|
elrab |
|- ( D e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
| 159 |
154 158
|
sylibr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> D e. { n e. ZZ | ( n || M /\ n || N ) } ) |
| 160 |
|
breq2 |
|- ( z = D -> ( y < z <-> y < D ) ) |
| 161 |
160
|
adantl |
|- ( ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) /\ z = D ) -> ( y < z <-> y < D ) ) |
| 162 |
|
simprr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> y < D ) |
| 163 |
159 161 162
|
rspcedvd |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> E. z e. { n e. ZZ | ( n || M /\ n || N ) } y < z ) |
| 164 |
64 70 149 163
|
eqsupd |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) = D ) |
| 165 |
62 164
|
eqtrd |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 166 |
60 165
|
pm2.61ian |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
| 167 |
22 166
|
eqtr2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> D = ( M gcd N ) ) |
| 168 |
20 167
|
impbida |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( D = ( M gcd N ) <-> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) |