Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
2 |
1
|
nn0ge0d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> 0 <_ ( M gcd N ) ) |
3 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
4 |
|
3anass |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( e e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
5 |
4
|
biancomi |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) ) |
6 |
|
dvdsgcd |
|- ( ( e e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
7 |
5 6
|
sylbir |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ e e. ZZ ) -> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
8 |
7
|
ralrimiva |
|- ( ( M e. ZZ /\ N e. ZZ ) -> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) |
9 |
2 3 8
|
3jca |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
10 |
9
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
11 |
|
breq2 |
|- ( D = ( M gcd N ) -> ( 0 <_ D <-> 0 <_ ( M gcd N ) ) ) |
12 |
|
breq1 |
|- ( D = ( M gcd N ) -> ( D || M <-> ( M gcd N ) || M ) ) |
13 |
|
breq1 |
|- ( D = ( M gcd N ) -> ( D || N <-> ( M gcd N ) || N ) ) |
14 |
12 13
|
anbi12d |
|- ( D = ( M gcd N ) -> ( ( D || M /\ D || N ) <-> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) ) |
15 |
|
breq2 |
|- ( D = ( M gcd N ) -> ( e || D <-> e || ( M gcd N ) ) ) |
16 |
15
|
imbi2d |
|- ( D = ( M gcd N ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
17 |
16
|
ralbidv |
|- ( D = ( M gcd N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) |
18 |
11 14 17
|
3anbi123d |
|- ( D = ( M gcd N ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
19 |
18
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ ( M gcd N ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || ( M gcd N ) ) ) ) ) |
20 |
10 19
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ D = ( M gcd N ) ) -> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) |
21 |
|
gcdval |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
22 |
21
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
23 |
|
iftrue |
|- ( ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
24 |
23
|
adantr |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = 0 ) |
25 |
|
breq2 |
|- ( M = 0 -> ( D || M <-> D || 0 ) ) |
26 |
|
breq2 |
|- ( N = 0 -> ( D || N <-> D || 0 ) ) |
27 |
25 26
|
bi2anan9 |
|- ( ( M = 0 /\ N = 0 ) -> ( ( D || M /\ D || N ) <-> ( D || 0 /\ D || 0 ) ) ) |
28 |
|
breq2 |
|- ( M = 0 -> ( e || M <-> e || 0 ) ) |
29 |
|
breq2 |
|- ( N = 0 -> ( e || N <-> e || 0 ) ) |
30 |
28 29
|
bi2anan9 |
|- ( ( M = 0 /\ N = 0 ) -> ( ( e || M /\ e || N ) <-> ( e || 0 /\ e || 0 ) ) ) |
31 |
30
|
imbi1d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
32 |
31
|
ralbidv |
|- ( ( M = 0 /\ N = 0 ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) <-> A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) |
33 |
27 32
|
3anbi23d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) <-> ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) ) ) |
34 |
|
dvdszrcl |
|- ( D || 0 -> ( D e. ZZ /\ 0 e. ZZ ) ) |
35 |
|
dvds0 |
|- ( e e. ZZ -> e || 0 ) |
36 |
35 35
|
jca |
|- ( e e. ZZ -> ( e || 0 /\ e || 0 ) ) |
37 |
36
|
adantl |
|- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( e || 0 /\ e || 0 ) ) |
38 |
|
pm5.5 |
|- ( ( e || 0 /\ e || 0 ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
39 |
37 38
|
syl |
|- ( ( ( D e. ZZ /\ 0 <_ D ) /\ e e. ZZ ) -> ( ( ( e || 0 /\ e || 0 ) -> e || D ) <-> e || D ) ) |
40 |
39
|
ralbidva |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) <-> A. e e. ZZ e || D ) ) |
41 |
|
0z |
|- 0 e. ZZ |
42 |
|
breq1 |
|- ( e = 0 -> ( e || D <-> 0 || D ) ) |
43 |
42
|
rspcv |
|- ( 0 e. ZZ -> ( A. e e. ZZ e || D -> 0 || D ) ) |
44 |
41 43
|
ax-mp |
|- ( A. e e. ZZ e || D -> 0 || D ) |
45 |
|
0dvds |
|- ( D e. ZZ -> ( 0 || D <-> D = 0 ) ) |
46 |
45
|
biimpd |
|- ( D e. ZZ -> ( 0 || D -> D = 0 ) ) |
47 |
|
eqcom |
|- ( 0 = D <-> D = 0 ) |
48 |
46 47
|
syl6ibr |
|- ( D e. ZZ -> ( 0 || D -> 0 = D ) ) |
49 |
44 48
|
syl5 |
|- ( D e. ZZ -> ( A. e e. ZZ e || D -> 0 = D ) ) |
50 |
49
|
adantr |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ e || D -> 0 = D ) ) |
51 |
40 50
|
sylbid |
|- ( ( D e. ZZ /\ 0 <_ D ) -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) |
52 |
51
|
ex |
|- ( D e. ZZ -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
53 |
52
|
adantr |
|- ( ( D e. ZZ /\ 0 e. ZZ ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
54 |
34 53
|
syl |
|- ( D || 0 -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
55 |
54
|
adantr |
|- ( ( D || 0 /\ D || 0 ) -> ( 0 <_ D -> ( A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) -> 0 = D ) ) ) |
56 |
55
|
3imp21 |
|- ( ( 0 <_ D /\ ( D || 0 /\ D || 0 ) /\ A. e e. ZZ ( ( e || 0 /\ e || 0 ) -> e || D ) ) -> 0 = D ) |
57 |
33 56
|
syl6bi |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> 0 = D ) ) |
58 |
57
|
adantld |
|- ( ( M = 0 /\ N = 0 ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> 0 = D ) ) |
59 |
58
|
imp |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> 0 = D ) |
60 |
24 59
|
eqtrd |
|- ( ( ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
61 |
|
iffalse |
|- ( -. ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
62 |
61
|
adantr |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
63 |
|
ltso |
|- < Or RR |
64 |
63
|
a1i |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> < Or RR ) |
65 |
|
dvdszrcl |
|- ( D || M -> ( D e. ZZ /\ M e. ZZ ) ) |
66 |
65
|
simpld |
|- ( D || M -> D e. ZZ ) |
67 |
66
|
zred |
|- ( D || M -> D e. RR ) |
68 |
67
|
adantr |
|- ( ( D || M /\ D || N ) -> D e. RR ) |
69 |
68
|
3ad2ant2 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> D e. RR ) |
70 |
69
|
ad2antll |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> D e. RR ) |
71 |
|
breq1 |
|- ( n = y -> ( n || M <-> y || M ) ) |
72 |
|
breq1 |
|- ( n = y -> ( n || N <-> y || N ) ) |
73 |
71 72
|
anbi12d |
|- ( n = y -> ( ( n || M /\ n || N ) <-> ( y || M /\ y || N ) ) ) |
74 |
73
|
elrab |
|- ( y e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( y e. ZZ /\ ( y || M /\ y || N ) ) ) |
75 |
|
breq1 |
|- ( e = y -> ( e || M <-> y || M ) ) |
76 |
|
breq1 |
|- ( e = y -> ( e || N <-> y || N ) ) |
77 |
75 76
|
anbi12d |
|- ( e = y -> ( ( e || M /\ e || N ) <-> ( y || M /\ y || N ) ) ) |
78 |
|
breq1 |
|- ( e = y -> ( e || D <-> y || D ) ) |
79 |
77 78
|
imbi12d |
|- ( e = y -> ( ( ( e || M /\ e || N ) -> e || D ) <-> ( ( y || M /\ y || N ) -> y || D ) ) ) |
80 |
79
|
rspcv |
|- ( y e. ZZ -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( y || M /\ y || N ) -> y || D ) ) ) |
81 |
80
|
com23 |
|- ( y e. ZZ -> ( ( y || M /\ y || N ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) ) |
82 |
81
|
imp |
|- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
83 |
82
|
ad2antrr |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> y || D ) ) |
84 |
|
elnn0z |
|- ( D e. NN0 <-> ( D e. ZZ /\ 0 <_ D ) ) |
85 |
84
|
simplbi2 |
|- ( D e. ZZ -> ( 0 <_ D -> D e. NN0 ) ) |
86 |
85
|
adantr |
|- ( ( D e. ZZ /\ M e. ZZ ) -> ( 0 <_ D -> D e. NN0 ) ) |
87 |
65 86
|
syl |
|- ( D || M -> ( 0 <_ D -> D e. NN0 ) ) |
88 |
87
|
adantr |
|- ( ( D || M /\ D || N ) -> ( 0 <_ D -> D e. NN0 ) ) |
89 |
88
|
impcom |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN0 ) |
90 |
|
simp-4l |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> y e. ZZ ) |
91 |
|
elnn0 |
|- ( D e. NN0 <-> ( D e. NN \/ D = 0 ) ) |
92 |
|
2a1 |
|- ( D e. NN -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
93 |
|
breq1 |
|- ( D = 0 -> ( D || M <-> 0 || M ) ) |
94 |
|
breq1 |
|- ( D = 0 -> ( D || N <-> 0 || N ) ) |
95 |
93 94
|
anbi12d |
|- ( D = 0 -> ( ( D || M /\ D || N ) <-> ( 0 || M /\ 0 || N ) ) ) |
96 |
95
|
anbi2d |
|- ( D = 0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
97 |
96
|
adantr |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) <-> ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) ) ) |
98 |
|
ianor |
|- ( -. ( M = 0 /\ N = 0 ) <-> ( -. M = 0 \/ -. N = 0 ) ) |
99 |
|
dvdszrcl |
|- ( 0 || M -> ( 0 e. ZZ /\ M e. ZZ ) ) |
100 |
|
0dvds |
|- ( M e. ZZ -> ( 0 || M <-> M = 0 ) ) |
101 |
|
pm2.24 |
|- ( M = 0 -> ( -. M = 0 -> D e. NN ) ) |
102 |
100 101
|
syl6bi |
|- ( M e. ZZ -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
103 |
102
|
adantl |
|- ( ( 0 e. ZZ /\ M e. ZZ ) -> ( 0 || M -> ( -. M = 0 -> D e. NN ) ) ) |
104 |
99 103
|
mpcom |
|- ( 0 || M -> ( -. M = 0 -> D e. NN ) ) |
105 |
104
|
adantr |
|- ( ( 0 || M /\ 0 || N ) -> ( -. M = 0 -> D e. NN ) ) |
106 |
105
|
com12 |
|- ( -. M = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
107 |
|
dvdszrcl |
|- ( 0 || N -> ( 0 e. ZZ /\ N e. ZZ ) ) |
108 |
|
0dvds |
|- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
109 |
|
pm2.24 |
|- ( N = 0 -> ( -. N = 0 -> D e. NN ) ) |
110 |
108 109
|
syl6bi |
|- ( N e. ZZ -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
111 |
110
|
adantl |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 || N -> ( -. N = 0 -> D e. NN ) ) ) |
112 |
107 111
|
mpcom |
|- ( 0 || N -> ( -. N = 0 -> D e. NN ) ) |
113 |
112
|
adantl |
|- ( ( 0 || M /\ 0 || N ) -> ( -. N = 0 -> D e. NN ) ) |
114 |
113
|
com12 |
|- ( -. N = 0 -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
115 |
106 114
|
jaoi |
|- ( ( -. M = 0 \/ -. N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
116 |
98 115
|
sylbi |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 || M /\ 0 || N ) -> D e. NN ) ) |
117 |
116
|
adantld |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
118 |
117
|
ad2antll |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( 0 || M /\ 0 || N ) ) -> D e. NN ) ) |
119 |
97 118
|
sylbid |
|- ( ( D = 0 /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
120 |
119
|
ex |
|- ( D = 0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
121 |
92 120
|
jaoi |
|- ( ( D e. NN \/ D = 0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
122 |
91 121
|
sylbi |
|- ( D e. NN0 -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) ) |
123 |
122
|
impcom |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> D e. NN ) ) |
124 |
123
|
imp |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> D e. NN ) |
125 |
|
dvdsle |
|- ( ( y e. ZZ /\ D e. NN ) -> ( y || D -> y <_ D ) ) |
126 |
90 124 125
|
syl2anc |
|- ( ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ D e. NN0 ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) ) ) -> ( y || D -> y <_ D ) ) |
127 |
126
|
exp31 |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> y <_ D ) ) ) ) |
128 |
127
|
com14 |
|- ( y || D -> ( D e. NN0 -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) ) |
129 |
128
|
imp |
|- ( ( y || D /\ D e. NN0 ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) ) |
130 |
129
|
impcom |
|- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y <_ D ) ) |
131 |
130
|
imp |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> y <_ D ) |
132 |
|
zre |
|- ( y e. ZZ -> y e. RR ) |
133 |
132
|
ad2antrr |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> y e. RR ) |
134 |
68
|
ad2antlr |
|- ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) -> D e. RR ) |
135 |
|
lenlt |
|- ( ( y e. RR /\ D e. RR ) -> ( y <_ D <-> -. D < y ) ) |
136 |
133 134 135
|
syl2anr |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> ( y <_ D <-> -. D < y ) ) |
137 |
131 136
|
mpbid |
|- ( ( ( ( 0 <_ D /\ ( D || M /\ D || N ) ) /\ ( y || D /\ D e. NN0 ) ) /\ ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) ) -> -. D < y ) |
138 |
137
|
exp31 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( ( y || D /\ D e. NN0 ) -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
139 |
89 138
|
mpan2d |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( y || D -> ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> -. D < y ) ) ) |
140 |
139
|
com13 |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
141 |
140
|
adantr |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( y || D -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
142 |
83 141
|
syld |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> -. D < y ) ) ) |
143 |
142
|
com13 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) ) -> ( A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) ) |
144 |
143
|
3impia |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> -. D < y ) ) |
145 |
144
|
com12 |
|- ( ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> -. D < y ) ) |
146 |
145
|
expimpd |
|- ( ( ( y e. ZZ /\ ( y || M /\ y || N ) ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> -. D < y ) ) |
147 |
146
|
expimpd |
|- ( ( y e. ZZ /\ ( y || M /\ y || N ) ) -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
148 |
74 147
|
sylbi |
|- ( y e. { n e. ZZ | ( n || M /\ n || N ) } -> ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> -. D < y ) ) |
149 |
148
|
impcom |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ y e. { n e. ZZ | ( n || M /\ n || N ) } ) -> -. D < y ) |
150 |
66
|
adantr |
|- ( ( D || M /\ D || N ) -> D e. ZZ ) |
151 |
150
|
ancri |
|- ( ( D || M /\ D || N ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
152 |
151
|
3ad2ant2 |
|- ( ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
153 |
152
|
ad2antll |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
154 |
153
|
adantr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
155 |
|
breq1 |
|- ( n = D -> ( n || M <-> D || M ) ) |
156 |
|
breq1 |
|- ( n = D -> ( n || N <-> D || N ) ) |
157 |
155 156
|
anbi12d |
|- ( n = D -> ( ( n || M /\ n || N ) <-> ( D || M /\ D || N ) ) ) |
158 |
157
|
elrab |
|- ( D e. { n e. ZZ | ( n || M /\ n || N ) } <-> ( D e. ZZ /\ ( D || M /\ D || N ) ) ) |
159 |
154 158
|
sylibr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> D e. { n e. ZZ | ( n || M /\ n || N ) } ) |
160 |
|
breq2 |
|- ( z = D -> ( y < z <-> y < D ) ) |
161 |
160
|
adantl |
|- ( ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) /\ z = D ) -> ( y < z <-> y < D ) ) |
162 |
|
simprr |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> y < D ) |
163 |
159 161 162
|
rspcedvd |
|- ( ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) /\ ( y e. RR /\ y < D ) ) -> E. z e. { n e. ZZ | ( n || M /\ n || N ) } y < z ) |
164 |
64 70 149 163
|
eqsupd |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) = D ) |
165 |
62 164
|
eqtrd |
|- ( ( -. ( M = 0 /\ N = 0 ) /\ ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
166 |
60 165
|
pm2.61ian |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = D ) |
167 |
22 166
|
eqtr2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) -> D = ( M gcd N ) ) |
168 |
20 167
|
impbida |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( D = ( M gcd N ) <-> ( 0 <_ D /\ ( D || M /\ D || N ) /\ A. e e. ZZ ( ( e || M /\ e || N ) -> e || D ) ) ) ) |