Description: A stronger version of df-id that does not require x and y to be disjoint. This is not the definition since, in order to pass our definition soundness test, a definition has to have disjoint dummy variables, see conventions . The proof can be instructive in showing how disjoint variable conditions may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008) (Revised by Mario Carneiro, 18-Nov-2016)
Use df-id instead to make the semantics of the constructor df-opab clearer (in usages, x , y will typically be dummy variables, so can be assumed disjoint). (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfid3 | |- _I = { <. x , y >. | x = y } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-id |  |-  _I = { <. x , z >. | x = z } | |
| 2 | equcom | |- ( x = z <-> z = x ) | |
| 3 | 2 | anbi1ci | |- ( ( w = <. x , z >. /\ x = z ) <-> ( z = x /\ w = <. x , z >. ) ) | 
| 4 | 3 | exbii | |- ( E. z ( w = <. x , z >. /\ x = z ) <-> E. z ( z = x /\ w = <. x , z >. ) ) | 
| 5 | opeq2 | |- ( z = x -> <. x , z >. = <. x , x >. ) | |
| 6 | 5 | eqeq2d | |- ( z = x -> ( w = <. x , z >. <-> w = <. x , x >. ) ) | 
| 7 | 6 | equsexvw | |- ( E. z ( z = x /\ w = <. x , z >. ) <-> w = <. x , x >. ) | 
| 8 | equid | |- x = x | |
| 9 | 8 | biantru | |- ( w = <. x , x >. <-> ( w = <. x , x >. /\ x = x ) ) | 
| 10 | 4 7 9 | 3bitri | |- ( E. z ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , x >. /\ x = x ) ) | 
| 11 | 10 | exbii | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x ( w = <. x , x >. /\ x = x ) ) | 
| 12 | nfe1 | |- F/ x E. x ( w = <. x , x >. /\ x = x ) | |
| 13 | 12 | 19.9 | |- ( E. x E. x ( w = <. x , x >. /\ x = x ) <-> E. x ( w = <. x , x >. /\ x = x ) ) | 
| 14 | 11 13 | bitr4i | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. x ( w = <. x , x >. /\ x = x ) ) | 
| 15 | opeq2 | |- ( x = y -> <. x , x >. = <. x , y >. ) | |
| 16 | 15 | eqeq2d | |- ( x = y -> ( w = <. x , x >. <-> w = <. x , y >. ) ) | 
| 17 | equequ2 | |- ( x = y -> ( x = x <-> x = y ) ) | |
| 18 | 16 17 | anbi12d | |- ( x = y -> ( ( w = <. x , x >. /\ x = x ) <-> ( w = <. x , y >. /\ x = y ) ) ) | 
| 19 | 18 | sps | |- ( A. x x = y -> ( ( w = <. x , x >. /\ x = x ) <-> ( w = <. x , y >. /\ x = y ) ) ) | 
| 20 | 19 | drex1 | |- ( A. x x = y -> ( E. x ( w = <. x , x >. /\ x = x ) <-> E. y ( w = <. x , y >. /\ x = y ) ) ) | 
| 21 | 20 | drex2 | |- ( A. x x = y -> ( E. x E. x ( w = <. x , x >. /\ x = x ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) | 
| 22 | 14 21 | bitrid | |- ( A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) | 
| 23 | nfnae | |- F/ x -. A. x x = y | |
| 24 | nfnae | |- F/ y -. A. x x = y | |
| 25 | nfcvd | |- ( -. A. x x = y -> F/_ y w ) | |
| 26 | nfcvf2 | |- ( -. A. x x = y -> F/_ y x ) | |
| 27 | nfcvd | |- ( -. A. x x = y -> F/_ y z ) | |
| 28 | 26 27 | nfopd | |- ( -. A. x x = y -> F/_ y <. x , z >. ) | 
| 29 | 25 28 | nfeqd | |- ( -. A. x x = y -> F/ y w = <. x , z >. ) | 
| 30 | 26 27 | nfeqd | |- ( -. A. x x = y -> F/ y x = z ) | 
| 31 | 29 30 | nfand | |- ( -. A. x x = y -> F/ y ( w = <. x , z >. /\ x = z ) ) | 
| 32 | opeq2 | |- ( z = y -> <. x , z >. = <. x , y >. ) | |
| 33 | 32 | eqeq2d | |- ( z = y -> ( w = <. x , z >. <-> w = <. x , y >. ) ) | 
| 34 | equequ2 | |- ( z = y -> ( x = z <-> x = y ) ) | |
| 35 | 33 34 | anbi12d | |- ( z = y -> ( ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , y >. /\ x = y ) ) ) | 
| 36 | 35 | a1i | |- ( -. A. x x = y -> ( z = y -> ( ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , y >. /\ x = y ) ) ) ) | 
| 37 | 24 31 36 | cbvexd | |- ( -. A. x x = y -> ( E. z ( w = <. x , z >. /\ x = z ) <-> E. y ( w = <. x , y >. /\ x = y ) ) ) | 
| 38 | 23 37 | exbid | |- ( -. A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) | 
| 39 | 22 38 | pm2.61i | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) | 
| 40 | 39 | abbii |  |-  { w | E. x E. z ( w = <. x , z >. /\ x = z ) } = { w | E. x E. y ( w = <. x , y >. /\ x = y ) } | 
| 41 | df-opab |  |-  { <. x , z >. | x = z } = { w | E. x E. z ( w = <. x , z >. /\ x = z ) } | |
| 42 | df-opab |  |-  { <. x , y >. | x = y } = { w | E. x E. y ( w = <. x , y >. /\ x = y ) } | |
| 43 | 40 41 42 | 3eqtr4i |  |-  { <. x , z >. | x = z } = { <. x , y >. | x = y } | 
| 44 | 1 43 | eqtri |  |-  _I = { <. x , y >. | x = y } |