Description: A stronger version of df-id that does not require x and y to be disjoint. This is not the definition since, in order to pass our definition soundness test, a definition has to have disjoint dummy variables, see conventions . The proof can be instructive in showing how disjoint variable conditions may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008) (Revised by Mario Carneiro, 18-Nov-2016)
Use df-id instead to make the semantics of the constructor df-opab clearer (in usages, x , y will typically be dummy variables, so can be assumed disjoint). (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfid3 | |- _I = { <. x , y >. | x = y } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-id | |- _I = { <. x , z >. | x = z } |
|
2 | equcom | |- ( x = z <-> z = x ) |
|
3 | 2 | anbi1ci | |- ( ( w = <. x , z >. /\ x = z ) <-> ( z = x /\ w = <. x , z >. ) ) |
4 | 3 | exbii | |- ( E. z ( w = <. x , z >. /\ x = z ) <-> E. z ( z = x /\ w = <. x , z >. ) ) |
5 | opeq2 | |- ( z = x -> <. x , z >. = <. x , x >. ) |
|
6 | 5 | eqeq2d | |- ( z = x -> ( w = <. x , z >. <-> w = <. x , x >. ) ) |
7 | 6 | equsexvw | |- ( E. z ( z = x /\ w = <. x , z >. ) <-> w = <. x , x >. ) |
8 | equid | |- x = x |
|
9 | 8 | biantru | |- ( w = <. x , x >. <-> ( w = <. x , x >. /\ x = x ) ) |
10 | 4 7 9 | 3bitri | |- ( E. z ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , x >. /\ x = x ) ) |
11 | 10 | exbii | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x ( w = <. x , x >. /\ x = x ) ) |
12 | nfe1 | |- F/ x E. x ( w = <. x , x >. /\ x = x ) |
|
13 | 12 | 19.9 | |- ( E. x E. x ( w = <. x , x >. /\ x = x ) <-> E. x ( w = <. x , x >. /\ x = x ) ) |
14 | 11 13 | bitr4i | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. x ( w = <. x , x >. /\ x = x ) ) |
15 | opeq2 | |- ( x = y -> <. x , x >. = <. x , y >. ) |
|
16 | 15 | eqeq2d | |- ( x = y -> ( w = <. x , x >. <-> w = <. x , y >. ) ) |
17 | equequ2 | |- ( x = y -> ( x = x <-> x = y ) ) |
|
18 | 16 17 | anbi12d | |- ( x = y -> ( ( w = <. x , x >. /\ x = x ) <-> ( w = <. x , y >. /\ x = y ) ) ) |
19 | 18 | sps | |- ( A. x x = y -> ( ( w = <. x , x >. /\ x = x ) <-> ( w = <. x , y >. /\ x = y ) ) ) |
20 | 19 | drex1 | |- ( A. x x = y -> ( E. x ( w = <. x , x >. /\ x = x ) <-> E. y ( w = <. x , y >. /\ x = y ) ) ) |
21 | 20 | drex2 | |- ( A. x x = y -> ( E. x E. x ( w = <. x , x >. /\ x = x ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) |
22 | 14 21 | syl5bb | |- ( A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) |
23 | nfnae | |- F/ x -. A. x x = y |
|
24 | nfnae | |- F/ y -. A. x x = y |
|
25 | nfcvd | |- ( -. A. x x = y -> F/_ y w ) |
|
26 | nfcvf2 | |- ( -. A. x x = y -> F/_ y x ) |
|
27 | nfcvd | |- ( -. A. x x = y -> F/_ y z ) |
|
28 | 26 27 | nfopd | |- ( -. A. x x = y -> F/_ y <. x , z >. ) |
29 | 25 28 | nfeqd | |- ( -. A. x x = y -> F/ y w = <. x , z >. ) |
30 | 26 27 | nfeqd | |- ( -. A. x x = y -> F/ y x = z ) |
31 | 29 30 | nfand | |- ( -. A. x x = y -> F/ y ( w = <. x , z >. /\ x = z ) ) |
32 | opeq2 | |- ( z = y -> <. x , z >. = <. x , y >. ) |
|
33 | 32 | eqeq2d | |- ( z = y -> ( w = <. x , z >. <-> w = <. x , y >. ) ) |
34 | equequ2 | |- ( z = y -> ( x = z <-> x = y ) ) |
|
35 | 33 34 | anbi12d | |- ( z = y -> ( ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , y >. /\ x = y ) ) ) |
36 | 35 | a1i | |- ( -. A. x x = y -> ( z = y -> ( ( w = <. x , z >. /\ x = z ) <-> ( w = <. x , y >. /\ x = y ) ) ) ) |
37 | 24 31 36 | cbvexd | |- ( -. A. x x = y -> ( E. z ( w = <. x , z >. /\ x = z ) <-> E. y ( w = <. x , y >. /\ x = y ) ) ) |
38 | 23 37 | exbid | |- ( -. A. x x = y -> ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) ) |
39 | 22 38 | pm2.61i | |- ( E. x E. z ( w = <. x , z >. /\ x = z ) <-> E. x E. y ( w = <. x , y >. /\ x = y ) ) |
40 | 39 | abbii | |- { w | E. x E. z ( w = <. x , z >. /\ x = z ) } = { w | E. x E. y ( w = <. x , y >. /\ x = y ) } |
41 | df-opab | |- { <. x , z >. | x = z } = { w | E. x E. z ( w = <. x , z >. /\ x = z ) } |
|
42 | df-opab | |- { <. x , y >. | x = y } = { w | E. x E. y ( w = <. x , y >. /\ x = y ) } |
|
43 | 40 41 42 | 3eqtr4i | |- { <. x , z >. | x = z } = { <. x , y >. | x = y } |
44 | 1 43 | eqtri | |- _I = { <. x , y >. | x = y } |