| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfif3.1 |
|- C = { x | ph } |
| 2 |
|
dfif6 |
|- if ( ph , A , B ) = ( { y e. A | ph } u. { y e. B | -. ph } ) |
| 3 |
|
biidd |
|- ( x = y -> ( ph <-> ph ) ) |
| 4 |
3
|
cbvabv |
|- { x | ph } = { y | ph } |
| 5 |
1 4
|
eqtri |
|- C = { y | ph } |
| 6 |
5
|
ineq2i |
|- ( A i^i C ) = ( A i^i { y | ph } ) |
| 7 |
|
dfrab3 |
|- { y e. A | ph } = ( A i^i { y | ph } ) |
| 8 |
6 7
|
eqtr4i |
|- ( A i^i C ) = { y e. A | ph } |
| 9 |
|
dfrab3 |
|- { y e. B | -. ph } = ( B i^i { y | -. ph } ) |
| 10 |
|
biidd |
|- ( y = z -> ( ph <-> ph ) ) |
| 11 |
10
|
notabw |
|- { y | -. ph } = ( _V \ { z | ph } ) |
| 12 |
|
biidd |
|- ( x = z -> ( ph <-> ph ) ) |
| 13 |
12
|
cbvabv |
|- { x | ph } = { z | ph } |
| 14 |
1 13
|
eqtri |
|- C = { z | ph } |
| 15 |
14
|
difeq2i |
|- ( _V \ C ) = ( _V \ { z | ph } ) |
| 16 |
11 15
|
eqtr4i |
|- { y | -. ph } = ( _V \ C ) |
| 17 |
16
|
ineq2i |
|- ( B i^i { y | -. ph } ) = ( B i^i ( _V \ C ) ) |
| 18 |
9 17
|
eqtr2i |
|- ( B i^i ( _V \ C ) ) = { y e. B | -. ph } |
| 19 |
8 18
|
uneq12i |
|- ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) = ( { y e. A | ph } u. { y e. B | -. ph } ) |
| 20 |
2 19
|
eqtr4i |
|- if ( ph , A , B ) = ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) |