Description: Alternate definition of the conditional operator for propositions. The value of if- ( ph , ps , ch ) is "if ph then ps , and if not ph then ch ". This is the definition used in Section II.24 of Church p. 129 (Definition D12 page 132) (see comment of df-ifp ). (Contributed by BJ, 22-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp2 | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
2 | cases2 | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
|
3 | 1 2 | bitri | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |