Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfifp3 | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ph \/ ch ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfifp2 | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
|
| 2 | pm4.64 | |- ( ( -. ph -> ch ) <-> ( ph \/ ch ) ) |
|
| 3 | 2 | anbi2i | |- ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) <-> ( ( ph -> ps ) /\ ( ph \/ ch ) ) ) |
| 4 | 1 3 | bitri | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( ph \/ ch ) ) ) |