Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp5 | |- ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfifp2 | |- ( if- ( ph , ps , ch ) <-> ( ( ph -> ps ) /\ ( -. ph -> ch ) ) ) |
|
2 | imor | |- ( ( ph -> ps ) <-> ( -. ph \/ ps ) ) |
|
3 | 2 | anbi1i | |- ( ( ( ph -> ps ) /\ ( -. ph -> ch ) ) <-> ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) ) |
4 | 1 3 | bitri | |- ( if- ( ph , ps , ch ) <-> ( ( -. ph \/ ps ) /\ ( -. ph -> ch ) ) ) |