Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | dfifp6 | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ifp | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) ) |
|
2 | ancom | |- ( ( -. ph /\ ch ) <-> ( ch /\ -. ph ) ) |
|
3 | annim | |- ( ( ch /\ -. ph ) <-> -. ( ch -> ph ) ) |
|
4 | 2 3 | bitri | |- ( ( -. ph /\ ch ) <-> -. ( ch -> ph ) ) |
5 | 4 | orbi2i | |- ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) ) |
6 | 1 5 | bitri | |- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) ) |