Metamath Proof Explorer


Theorem dfifp6

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp6
|- ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) )

Proof

Step Hyp Ref Expression
1 df-ifp
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) )
2 ancom
 |-  ( ( -. ph /\ ch ) <-> ( ch /\ -. ph ) )
3 annim
 |-  ( ( ch /\ -. ph ) <-> -. ( ch -> ph ) )
4 2 3 bitri
 |-  ( ( -. ph /\ ch ) <-> -. ( ch -> ph ) )
5 4 orbi2i
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) )
6 1 5 bitri
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) )