Metamath Proof Explorer


Theorem dfifp7

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp7
|- ( if- ( ph , ps , ch ) <-> ( ( ch -> ph ) -> ( ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) <-> ( -. ( ch -> ph ) \/ ( ph /\ ps ) ) )
2 dfifp6
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ -. ( ch -> ph ) ) )
3 imor
 |-  ( ( ( ch -> ph ) -> ( ph /\ ps ) ) <-> ( -. ( ch -> ph ) \/ ( ph /\ ps ) ) )
4 1 2 3 3bitr4i
 |-  ( if- ( ph , ps , ch ) <-> ( ( ch -> ph ) -> ( ph /\ ps ) ) )