| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfii3.1 |  |-  J = ( TopOpen ` CCfld ) | 
						
							| 2 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 3 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 4 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 5 | 3 4 | sstri |  |-  ( 0 [,] 1 ) C_ CC | 
						
							| 6 |  | eqid |  |-  ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 7 | 1 | cnfldtopn |  |-  J = ( MetOpen ` ( abs o. - ) ) | 
						
							| 8 |  | df-ii |  |-  II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 9 | 6 7 8 | metrest |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( J |`t ( 0 [,] 1 ) ) = II ) | 
						
							| 10 | 2 5 9 | mp2an |  |-  ( J |`t ( 0 [,] 1 ) ) = II | 
						
							| 11 | 10 | eqcomi |  |-  II = ( J |`t ( 0 [,] 1 ) ) |