Step |
Hyp |
Ref |
Expression |
1 |
|
dfii3.1 |
|- J = ( TopOpen ` CCfld ) |
2 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
3 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
3 4
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
6 |
|
eqid |
|- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
7 |
1
|
cnfldtopn |
|- J = ( MetOpen ` ( abs o. - ) ) |
8 |
|
df-ii |
|- II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
9 |
6 7 8
|
metrest |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( J |`t ( 0 [,] 1 ) ) = II ) |
10 |
2 5 9
|
mp2an |
|- ( J |`t ( 0 [,] 1 ) ) = II |
11 |
10
|
eqcomi |
|- II = ( J |`t ( 0 [,] 1 ) ) |