Metamath Proof Explorer


Theorem dfii4

Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis dfii4.1
|- I = ( CCfld |`s ( 0 [,] 1 ) )
Assertion dfii4
|- II = ( TopOpen ` I )

Proof

Step Hyp Ref Expression
1 dfii4.1
 |-  I = ( CCfld |`s ( 0 [,] 1 ) )
2 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
3 2 dfii3
 |-  II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) )
4 1 2 resstopn
 |-  ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) = ( TopOpen ` I )
5 3 4 eqtri
 |-  II = ( TopOpen ` I )