Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfii4.1 | |- I = ( CCfld |`s ( 0 [,] 1 ) ) |
|
Assertion | dfii4 | |- II = ( TopOpen ` I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfii4.1 | |- I = ( CCfld |`s ( 0 [,] 1 ) ) |
|
2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
3 | 2 | dfii3 | |- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
4 | 1 2 | resstopn | |- ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) = ( TopOpen ` I ) |
5 | 3 4 | eqtri | |- II = ( TopOpen ` I ) |