Metamath Proof Explorer


Theorem dfiin3

Description: Alternate definition of indexed intersection when B is a set. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis dfiun3.1
|- B e. _V
Assertion dfiin3
|- |^|_ x e. A B = |^| ran ( x e. A |-> B )

Proof

Step Hyp Ref Expression
1 dfiun3.1
 |-  B e. _V
2 dfiin3g
 |-  ( A. x e. A B e. _V -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) )
3 1 a1i
 |-  ( x e. A -> B e. _V )
4 2 3 mprg
 |-  |^|_ x e. A B = |^| ran ( x e. A |-> B )