Metamath Proof Explorer


Theorem dfiin3g

Description: Alternate definition of indexed intersection when B is a set. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion dfiin3g
|- ( A. x e. A B e. C -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) )

Proof

Step Hyp Ref Expression
1 dfiin2g
 |-  ( A. x e. A B e. C -> |^|_ x e. A B = |^| { y | E. x e. A y = B } )
2 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
3 2 rnmpt
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
4 3 inteqi
 |-  |^| ran ( x e. A |-> B ) = |^| { y | E. x e. A y = B }
5 1 4 eqtr4di
 |-  ( A. x e. A B e. C -> |^|_ x e. A B = |^| ran ( x e. A |-> B ) )