Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dfima3 | |- ( A " B ) = { y | E. x ( x e. B /\ <. x , y >. e. A ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfima2 | |- ( A " B ) = { y | E. x e. B x A y } |
|
2 | df-br | |- ( x A y <-> <. x , y >. e. A ) |
|
3 | 2 | rexbii | |- ( E. x e. B x A y <-> E. x e. B <. x , y >. e. A ) |
4 | df-rex | |- ( E. x e. B <. x , y >. e. A <-> E. x ( x e. B /\ <. x , y >. e. A ) ) |
|
5 | 3 4 | bitri | |- ( E. x e. B x A y <-> E. x ( x e. B /\ <. x , y >. e. A ) ) |
6 | 5 | abbii | |- { y | E. x e. B x A y } = { y | E. x ( x e. B /\ <. x , y >. e. A ) } |
7 | 1 6 | eqtri | |- ( A " B ) = { y | E. x ( x e. B /\ <. x , y >. e. A ) } |