Metamath Proof Explorer


Theorem dfima3

Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfima3
|- ( A " B ) = { y | E. x ( x e. B /\ <. x , y >. e. A ) }

Proof

Step Hyp Ref Expression
1 dfima2
 |-  ( A " B ) = { y | E. x e. B x A y }
2 df-br
 |-  ( x A y <-> <. x , y >. e. A )
3 2 rexbii
 |-  ( E. x e. B x A y <-> E. x e. B <. x , y >. e. A )
4 df-rex
 |-  ( E. x e. B <. x , y >. e. A <-> E. x ( x e. B /\ <. x , y >. e. A ) )
5 3 4 bitri
 |-  ( E. x e. B x A y <-> E. x ( x e. B /\ <. x , y >. e. A ) )
6 5 abbii
 |-  { y | E. x e. B x A y } = { y | E. x ( x e. B /\ <. x , y >. e. A ) }
7 1 6 eqtri
 |-  ( A " B ) = { y | E. x ( x e. B /\ <. x , y >. e. A ) }