Step |
Hyp |
Ref |
Expression |
1 |
|
dfimafn |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A ( F ` x ) = y } ) |
2 |
|
iunab |
|- U_ x e. A { y | ( F ` x ) = y } = { y | E. x e. A ( F ` x ) = y } |
3 |
1 2
|
eqtr4di |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { y | ( F ` x ) = y } ) |
4 |
|
df-sn |
|- { ( F ` x ) } = { y | y = ( F ` x ) } |
5 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
6 |
5
|
abbii |
|- { y | y = ( F ` x ) } = { y | ( F ` x ) = y } |
7 |
4 6
|
eqtri |
|- { ( F ` x ) } = { y | ( F ` x ) = y } |
8 |
7
|
a1i |
|- ( x e. A -> { ( F ` x ) } = { y | ( F ` x ) = y } ) |
9 |
8
|
iuneq2i |
|- U_ x e. A { ( F ` x ) } = U_ x e. A { y | ( F ` x ) = y } |
10 |
3 9
|
eqtr4di |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = U_ x e. A { ( F ` x ) } ) |