Metamath Proof Explorer


Theorem dfin2

Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 . Another version is given by dfin4 . (Contributed by NM, 10-Jun-2004)

Ref Expression
Assertion dfin2
|- ( A i^i B ) = ( A \ ( _V \ B ) )

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 eldif
 |-  ( x e. ( _V \ B ) <-> ( x e. _V /\ -. x e. B ) )
3 1 2 mpbiran
 |-  ( x e. ( _V \ B ) <-> -. x e. B )
4 3 con2bii
 |-  ( x e. B <-> -. x e. ( _V \ B ) )
5 4 anbi2i
 |-  ( ( x e. A /\ x e. B ) <-> ( x e. A /\ -. x e. ( _V \ B ) ) )
6 eldif
 |-  ( x e. ( A \ ( _V \ B ) ) <-> ( x e. A /\ -. x e. ( _V \ B ) ) )
7 5 6 bitr4i
 |-  ( ( x e. A /\ x e. B ) <-> x e. ( A \ ( _V \ B ) ) )
8 7 ineqri
 |-  ( A i^i B ) = ( A \ ( _V \ B ) )