Description: An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 . Another version is given by dfin4 . (Contributed by NM, 10-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfin2 | |- ( A i^i B ) = ( A \ ( _V \ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | eldif | |- ( x e. ( _V \ B ) <-> ( x e. _V /\ -. x e. B ) ) |
|
| 3 | 1 2 | mpbiran | |- ( x e. ( _V \ B ) <-> -. x e. B ) |
| 4 | 3 | con2bii | |- ( x e. B <-> -. x e. ( _V \ B ) ) |
| 5 | 4 | anbi2i | |- ( ( x e. A /\ x e. B ) <-> ( x e. A /\ -. x e. ( _V \ B ) ) ) |
| 6 | eldif | |- ( x e. ( A \ ( _V \ B ) ) <-> ( x e. A /\ -. x e. ( _V \ B ) ) ) |
|
| 7 | 5 6 | bitr4i | |- ( ( x e. A /\ x e. B ) <-> x e. ( A \ ( _V \ B ) ) ) |
| 8 | 7 | ineqri | |- ( A i^i B ) = ( A \ ( _V \ B ) ) |