Step |
Hyp |
Ref |
Expression |
1 |
|
ddif |
|- ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) = ( A \ ( _V \ B ) ) |
2 |
|
dfun2 |
|- ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) |
3 |
|
ddif |
|- ( _V \ ( _V \ A ) ) = A |
4 |
3
|
difeq1i |
|- ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) = ( A \ ( _V \ B ) ) |
5 |
4
|
difeq2i |
|- ( _V \ ( ( _V \ ( _V \ A ) ) \ ( _V \ B ) ) ) = ( _V \ ( A \ ( _V \ B ) ) ) |
6 |
2 5
|
eqtri |
|- ( ( _V \ A ) u. ( _V \ B ) ) = ( _V \ ( A \ ( _V \ B ) ) ) |
7 |
6
|
difeq2i |
|- ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) = ( _V \ ( _V \ ( A \ ( _V \ B ) ) ) ) |
8 |
|
dfin2 |
|- ( A i^i B ) = ( A \ ( _V \ B ) ) |
9 |
1 7 8
|
3eqtr4ri |
|- ( A i^i B ) = ( _V \ ( ( _V \ A ) u. ( _V \ B ) ) ) |