Metamath Proof Explorer


Theorem dfin4

Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of Mendelson p. 231. (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion dfin4
|- ( A i^i B ) = ( A \ ( A \ B ) )

Proof

Step Hyp Ref Expression
1 inss1
 |-  ( A i^i B ) C_ A
2 dfss4
 |-  ( ( A i^i B ) C_ A <-> ( A \ ( A \ ( A i^i B ) ) ) = ( A i^i B ) )
3 1 2 mpbi
 |-  ( A \ ( A \ ( A i^i B ) ) ) = ( A i^i B )
4 difin
 |-  ( A \ ( A i^i B ) ) = ( A \ B )
5 4 difeq2i
 |-  ( A \ ( A \ ( A i^i B ) ) ) = ( A \ ( A \ B ) )
6 3 5 eqtr3i
 |-  ( A i^i B ) = ( A \ ( A \ B ) )