Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of Mendelson p. 231. (Contributed by NM, 25-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | dfin4 | |- ( A i^i B ) = ( A \ ( A \ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 | |- ( A i^i B ) C_ A |
|
2 | dfss4 | |- ( ( A i^i B ) C_ A <-> ( A \ ( A \ ( A i^i B ) ) ) = ( A i^i B ) ) |
|
3 | 1 2 | mpbi | |- ( A \ ( A \ ( A i^i B ) ) ) = ( A i^i B ) |
4 | difin | |- ( A \ ( A i^i B ) ) = ( A \ B ) |
|
5 | 4 | difeq2i | |- ( A \ ( A \ ( A i^i B ) ) ) = ( A \ ( A \ B ) ) |
6 | 3 5 | eqtr3i | |- ( A i^i B ) = ( A \ ( A \ B ) ) |