Step |
Hyp |
Ref |
Expression |
1 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
2 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
3 |
1 2
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
4 |
|
fnov |
|- ( (,) Fn ( RR* X. RR* ) <-> (,) = ( x e. RR* , y e. RR* |-> ( x (,) y ) ) ) |
5 |
3 4
|
mpbi |
|- (,) = ( x e. RR* , y e. RR* |-> ( x (,) y ) ) |
6 |
|
iooval2 |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x (,) y ) = { w e. RR | ( x < w /\ w < y ) } ) |
7 |
6
|
mpoeq3ia |
|- ( x e. RR* , y e. RR* |-> ( x (,) y ) ) = ( x e. RR* , y e. RR* |-> { w e. RR | ( x < w /\ w < y ) } ) |
8 |
5 7
|
eqtri |
|- (,) = ( x e. RR* , y e. RR* |-> { w e. RR | ( x < w /\ w < y ) } ) |