Metamath Proof Explorer


Theorem dfiota2

Description: Alternate definition for descriptions. Definition 8.18 in Quine p. 56. (Contributed by Andrew Salmon, 30-Jun-2011)

Ref Expression
Assertion dfiota2
|- ( iota x ph ) = U. { y | A. x ( ph <-> x = y ) }

Proof

Step Hyp Ref Expression
1 df-iota
 |-  ( iota x ph ) = U. { y | { x | ph } = { y } }
2 absn
 |-  ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) )
3 2 abbii
 |-  { y | { x | ph } = { y } } = { y | A. x ( ph <-> x = y ) }
4 3 unieqi
 |-  U. { y | { x | ph } = { y } } = U. { y | A. x ( ph <-> x = y ) }
5 1 4 eqtri
 |-  ( iota x ph ) = U. { y | A. x ( ph <-> x = y ) }