Metamath Proof Explorer


Theorem dfiun3g

Description: Alternate definition of indexed union when B is a set. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion dfiun3g
|- ( A. x e. A B e. C -> U_ x e. A B = U. ran ( x e. A |-> B ) )

Proof

Step Hyp Ref Expression
1 dfiun2g
 |-  ( A. x e. A B e. C -> U_ x e. A B = U. { y | E. x e. A y = B } )
2 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
3 2 rnmpt
 |-  ran ( x e. A |-> B ) = { y | E. x e. A y = B }
4 3 unieqi
 |-  U. ran ( x e. A |-> B ) = U. { y | E. x e. A y = B }
5 1 4 eqtr4di
 |-  ( A. x e. A B e. C -> U_ x e. A B = U. ran ( x e. A |-> B ) )