Description: Eliminate the expression { x | x e. A } in df-ixp , under the assumption that A and x are disjoint. This way, we can say that x is bound in X_ x e. A B even if it appears free in A . (Contributed by Mario Carneiro, 12-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | dfixp | |- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ixp | |- X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } |
|
2 | abid2 | |- { x | x e. A } = A |
|
3 | 2 | fneq2i | |- ( f Fn { x | x e. A } <-> f Fn A ) |
4 | 3 | anbi1i | |- ( ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) <-> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) ) |
5 | 4 | abbii | |- { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |
6 | 1 5 | eqtri | |- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) } |