Metamath Proof Explorer


Theorem dfixp

Description: Eliminate the expression { x | x e. A } in df-ixp , under the assumption that A and x are disjoint. This way, we can say that x is bound in X_ x e. A B even if it appears free in A . (Contributed by Mario Carneiro, 12-Aug-2016)

Ref Expression
Assertion dfixp
|- X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) }

Proof

Step Hyp Ref Expression
1 df-ixp
 |-  X_ x e. A B = { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) }
2 abid2
 |-  { x | x e. A } = A
3 2 fneq2i
 |-  ( f Fn { x | x e. A } <-> f Fn A )
4 3 anbi1i
 |-  ( ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) <-> ( f Fn A /\ A. x e. A ( f ` x ) e. B ) )
5 4 abbii
 |-  { f | ( f Fn { x | x e. A } /\ A. x e. A ( f ` x ) e. B ) } = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) }
6 1 5 eqtri
 |-  X_ x e. A B = { f | ( f Fn A /\ A. x e. A ( f ` x ) e. B ) }