Metamath Proof Explorer


Theorem dflidl2

Description: Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses dflidl2.u
|- U = ( LIdeal ` R )
dflidl2.b
|- B = ( Base ` R )
dflidl2.t
|- .x. = ( .r ` R )
Assertion dflidl2
|- ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) ) )

Proof

Step Hyp Ref Expression
1 dflidl2.u
 |-  U = ( LIdeal ` R )
2 dflidl2.b
 |-  B = ( Base ` R )
3 dflidl2.t
 |-  .x. = ( .r ` R )
4 1 lidlsubg
 |-  ( ( R e. Ring /\ I e. U ) -> I e. ( SubGrp ` R ) )
5 ringrng
 |-  ( R e. Ring -> R e. Rng )
6 1 2 3 dflidl2rng
 |-  ( ( R e. Rng /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x .x. y ) e. I ) )
7 5 6 sylan
 |-  ( ( R e. Ring /\ I e. ( SubGrp ` R ) ) -> ( I e. U <-> A. x e. B A. y e. I ( x .x. y ) e. I ) )
8 4 7 biadanid
 |-  ( R e. Ring -> ( I e. U <-> ( I e. ( SubGrp ` R ) /\ A. x e. B A. y e. I ( x .x. y ) e. I ) ) )