Metamath Proof Explorer


Theorem dflog2

Description: The natural logarithm function in terms of the exponential function restricted to its principal domain. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion dflog2
|- log = `' ( exp |` ran log )

Proof

Step Hyp Ref Expression
1 df-log
 |-  log = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )
2 logrn
 |-  ran log = ( `' Im " ( -u _pi (,] _pi ) )
3 2 reseq2i
 |-  ( exp |` ran log ) = ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )
4 3 cnveqi
 |-  `' ( exp |` ran log ) = `' ( exp |` ( `' Im " ( -u _pi (,] _pi ) ) )
5 1 4 eqtr4i
 |-  log = `' ( exp |` ran log )