Metamath Proof Explorer


Theorem dfmo

Description: Rederive df-mo from the old definition moeu . (Contributed by Wolf Lammen, 27-May-2019) (Proof modification is discouraged.) Use df-mo instead. (New usage is discouraged.)

Ref Expression
Assertion dfmo
|- ( E* x ph <-> E. y A. x ( ph -> x = y ) )

Proof

Step Hyp Ref Expression
1 moeu
 |-  ( E* x ph <-> ( E. x ph -> E! x ph ) )
2 eu6
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
3 2 imbi2i
 |-  ( ( E. x ph -> E! x ph ) <-> ( E. x ph -> E. y A. x ( ph <-> x = y ) ) )
4 dfmoeu
 |-  ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph -> x = y ) )
5 1 3 4 3bitri
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )