| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfmpo.1 |  |-  C e. _V | 
						
							| 2 |  | mpompts |  |-  ( x e. A , y e. B |-> C ) = ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) | 
						
							| 3 | 1 | csbex |  |-  [_ ( 2nd ` w ) / y ]_ C e. _V | 
						
							| 4 | 3 | csbex |  |-  [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C e. _V | 
						
							| 5 | 4 | dfmpt |  |-  ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) = U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } | 
						
							| 6 |  | nfcv |  |-  F/_ x w | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C | 
						
							| 8 | 6 7 | nfop |  |-  F/_ x <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. | 
						
							| 9 | 8 | nfsn |  |-  F/_ x { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } | 
						
							| 10 |  | nfcv |  |-  F/_ y w | 
						
							| 11 |  | nfcv |  |-  F/_ y ( 1st ` w ) | 
						
							| 12 |  | nfcsb1v |  |-  F/_ y [_ ( 2nd ` w ) / y ]_ C | 
						
							| 13 | 11 12 | nfcsbw |  |-  F/_ y [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C | 
						
							| 14 | 10 13 | nfop |  |-  F/_ y <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. | 
						
							| 15 | 14 | nfsn |  |-  F/_ y { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } | 
						
							| 16 |  | nfcv |  |-  F/_ w { <. <. x , y >. , C >. } | 
						
							| 17 |  | id |  |-  ( w = <. x , y >. -> w = <. x , y >. ) | 
						
							| 18 |  | csbopeq1a |  |-  ( w = <. x , y >. -> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C = C ) | 
						
							| 19 | 17 18 | opeq12d |  |-  ( w = <. x , y >. -> <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. = <. <. x , y >. , C >. ) | 
						
							| 20 | 19 | sneqd |  |-  ( w = <. x , y >. -> { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = { <. <. x , y >. , C >. } ) | 
						
							| 21 | 9 15 16 20 | iunxpf |  |-  U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } | 
						
							| 22 | 2 5 21 | 3eqtri |  |-  ( x e. A , y e. B |-> C ) = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |