Metamath Proof Explorer


Theorem dfmpt

Description: Alternate definition for the maps-to notation df-mpt (although it requires that B be a set). (Contributed by NM, 24-Aug-2010) (Revised by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis dfmpt.1
|- B e. _V
Assertion dfmpt
|- ( x e. A |-> B ) = U_ x e. A { <. x , B >. }

Proof

Step Hyp Ref Expression
1 dfmpt.1
 |-  B e. _V
2 dfmpt3
 |-  ( x e. A |-> B ) = U_ x e. A ( { x } X. { B } )
3 vex
 |-  x e. _V
4 3 1 xpsn
 |-  ( { x } X. { B } ) = { <. x , B >. }
5 4 a1i
 |-  ( x e. A -> ( { x } X. { B } ) = { <. x , B >. } )
6 5 iuneq2i
 |-  U_ x e. A ( { x } X. { B } ) = U_ x e. A { <. x , B >. }
7 2 6 eqtri
 |-  ( x e. A |-> B ) = U_ x e. A { <. x , B >. }