Metamath Proof Explorer


Theorem dfn2

Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007) (Proof shortened by Mario Carneiro, 13-Feb-2013)

Ref Expression
Assertion dfn2
|- NN = ( NN0 \ { 0 } )

Proof

Step Hyp Ref Expression
1 df-n0
 |-  NN0 = ( NN u. { 0 } )
2 1 difeq1i
 |-  ( NN0 \ { 0 } ) = ( ( NN u. { 0 } ) \ { 0 } )
3 difun2
 |-  ( ( NN u. { 0 } ) \ { 0 } ) = ( NN \ { 0 } )
4 0nnn
 |-  -. 0 e. NN
5 difsn
 |-  ( -. 0 e. NN -> ( NN \ { 0 } ) = NN )
6 4 5 ax-mp
 |-  ( NN \ { 0 } ) = NN
7 2 3 6 3eqtrri
 |-  NN = ( NN0 \ { 0 } )