Metamath Proof Explorer


Theorem dfnf5

Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion dfnf5
|- ( F/ x ph <-> ( { x | ph } = _V \/ { x | ph } = (/) ) )

Proof

Step Hyp Ref Expression
1 nf3
 |-  ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) )
2 abv
 |-  ( { x | ph } = _V <-> A. x ph )
3 ab0
 |-  ( { x | ph } = (/) <-> A. x -. ph )
4 2 3 orbi12i
 |-  ( ( { x | ph } = _V \/ { x | ph } = (/) ) <-> ( A. x ph \/ A. x -. ph ) )
5 1 4 bitr4i
 |-  ( F/ x ph <-> ( { x | ph } = _V \/ { x | ph } = (/) ) )