Description: Characterization of nonfreeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfnf5 | |- ( F/ x ph <-> ( { x | ph } = _V \/ { x | ph } = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf3 | |- ( F/ x ph <-> ( A. x ph \/ A. x -. ph ) ) |
|
2 | abv | |- ( { x | ph } = _V <-> A. x ph ) |
|
3 | ab0 | |- ( { x | ph } = (/) <-> A. x -. ph ) |
|
4 | 2 3 | orbi12i | |- ( ( { x | ph } = _V \/ { x | ph } = (/) ) <-> ( A. x ph \/ A. x -. ph ) ) |
5 | 1 4 | bitr4i | |- ( F/ x ph <-> ( { x | ph } = _V \/ { x | ph } = (/) ) ) |