Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004) (Proof shortened by BJ, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfnul3 | |- (/) = { x e. A | -. x e. A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal | |- -. F. |
|
| 2 | pm3.24 | |- -. ( x e. A /\ -. x e. A ) |
|
| 3 | 1 2 | 2false | |- ( F. <-> ( x e. A /\ -. x e. A ) ) |
| 4 | 3 | abbii | |- { x | F. } = { x | ( x e. A /\ -. x e. A ) } |
| 5 | dfnul4 | |- (/) = { x | F. } |
|
| 6 | df-rab | |- { x e. A | -. x e. A } = { x | ( x e. A /\ -. x e. A ) } |
|
| 7 | 4 5 6 | 3eqtr4i | |- (/) = { x e. A | -. x e. A } |