| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isodd2 | 
							 |-  ( x e. Odd <-> ( x e. ZZ /\ ( ( x - 1 ) / 2 ) e. ZZ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = x -> ( z - 1 ) = ( x - 1 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							oveq1d | 
							 |-  ( z = x -> ( ( z - 1 ) / 2 ) = ( ( x - 1 ) / 2 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eleq1d | 
							 |-  ( z = x -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> ( ( x - 1 ) / 2 ) e. ZZ ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							elrab | 
							 |-  ( x e. { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } <-> ( x e. ZZ /\ ( ( x - 1 ) / 2 ) e. ZZ ) ) | 
						
						
							| 6 | 
							
								1 5
							 | 
							bitr4i | 
							 |-  ( x e. Odd <-> x e. { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } ) | 
						
						
							| 7 | 
							
								6
							 | 
							eqriv | 
							 |-  Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } |