| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfodd6 | 
							 |-  Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } | 
						
						
							| 2 | 
							
								
							 | 
							eqcom | 
							 |-  ( z = ( ( 2 x. i ) + 1 ) <-> ( ( 2 x. i ) + 1 ) = z )  | 
						
						
							| 3 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( z = ( ( 2 x. i ) + 1 ) <-> ( ( 2 x. i ) + 1 ) = z ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rexbidva | 
							 |-  ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) <-> E. i e. ZZ ( ( 2 x. i ) + 1 ) = z ) )  | 
						
						
							| 5 | 
							
								
							 | 
							odd2np1 | 
							 |-  ( z e. ZZ -> ( -. 2 || z <-> E. i e. ZZ ( ( 2 x. i ) + 1 ) = z ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitr4d | 
							 |-  ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) <-> -. 2 || z ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							rabbiia | 
							 |-  { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } = { z e. ZZ | -. 2 || z } | 
						
						
							| 8 | 
							
								1 7
							 | 
							eqtri | 
							 |-  Odd = { z e. ZZ | -. 2 || z } |