Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd6 |
|- Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |
2 |
|
eqcom |
|- ( z = ( ( 2 x. i ) + 1 ) <-> ( ( 2 x. i ) + 1 ) = z ) |
3 |
2
|
a1i |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( z = ( ( 2 x. i ) + 1 ) <-> ( ( 2 x. i ) + 1 ) = z ) ) |
4 |
3
|
rexbidva |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) <-> E. i e. ZZ ( ( 2 x. i ) + 1 ) = z ) ) |
5 |
|
odd2np1 |
|- ( z e. ZZ -> ( -. 2 || z <-> E. i e. ZZ ( ( 2 x. i ) + 1 ) = z ) ) |
6 |
4 5
|
bitr4d |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) <-> -. 2 || z ) ) |
7 |
6
|
rabbiia |
|- { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } = { z e. ZZ | -. 2 || z } |
8 |
1 7
|
eqtri |
|- Odd = { z e. ZZ | -. 2 || z } |