| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfodd2 | 
							 |-  Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) / 2 ) e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							 |-  ( i = ( ( z - 1 ) / 2 ) -> ( 2 x. i ) = ( 2 x. ( ( z - 1 ) / 2 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							peano2zm | 
							 |-  ( z e. ZZ -> ( z - 1 ) e. ZZ )  | 
						
						
							| 5 | 
							
								4
							 | 
							zcnd | 
							 |-  ( z e. ZZ -> ( z - 1 ) e. CC )  | 
						
						
							| 6 | 
							
								
							 | 
							2cnd | 
							 |-  ( z e. ZZ -> 2 e. CC )  | 
						
						
							| 7 | 
							
								
							 | 
							2ne0 | 
							 |-  2 =/= 0  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( z e. ZZ -> 2 =/= 0 )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							3jca | 
							 |-  ( z e. ZZ -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							divcan2 | 
							 |-  ( ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) )  | 
						
						
							| 13 | 
							
								3 12
							 | 
							sylan9eqr | 
							 |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( 2 x. i ) = ( z - 1 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							 |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = ( ( z - 1 ) + 1 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							zcn | 
							 |-  ( z e. ZZ -> z e. CC )  | 
						
						
							| 16 | 
							
								
							 | 
							npcan1 | 
							 |-  ( z e. CC -> ( ( z - 1 ) + 1 ) = z )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( z e. ZZ -> ( ( z - 1 ) + 1 ) = z )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) + 1 ) = z )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							 |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( z - 1 ) + 1 ) = z )  | 
						
						
							| 20 | 
							
								14 19
							 | 
							eqtrd | 
							 |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = z )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq2d | 
							 |-  ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( z = ( ( 2 x. i ) + 1 ) <-> z = z ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> z = z )  | 
						
						
							| 23 | 
							
								2 21 22
							 | 
							rspcedvd | 
							 |-  ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							 |-  ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq1 | 
							 |-  ( z = ( ( 2 x. i ) + 1 ) -> ( z - 1 ) = ( ( ( 2 x. i ) + 1 ) - 1 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							zcn | 
							 |-  ( i e. ZZ -> i e. CC )  | 
						
						
							| 27 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( 2 e. CC /\ i e. CC ) -> ( 2 x. i ) e. CC )  | 
						
						
							| 28 | 
							
								6 26 27
							 | 
							syl2an | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC )  | 
						
						
							| 29 | 
							
								
							 | 
							pncan1 | 
							 |-  ( ( 2 x. i ) e. CC -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							sylan9eqr | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( z - 1 ) = ( 2 x. i ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq1d | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = ( ( 2 x. i ) / 2 ) )  | 
						
						
							| 33 | 
							
								26
							 | 
							adantl | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC )  | 
						
						
							| 34 | 
							
								
							 | 
							2cnd | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC )  | 
						
						
							| 35 | 
							
								7
							 | 
							a1i | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 )  | 
						
						
							| 36 | 
							
								33 34 35
							 | 
							divcan3d | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( 2 x. i ) / 2 ) = i )  | 
						
						
							| 38 | 
							
								32 37
							 | 
							eqtrd | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = i )  | 
						
						
							| 39 | 
							
								
							 | 
							simpr | 
							 |-  ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantr | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> i e. ZZ )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							eqeltrd | 
							 |-  ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) e. ZZ )  | 
						
						
							| 42 | 
							
								41
							 | 
							rexlimdva2 | 
							 |-  ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) -> ( ( z - 1 ) / 2 ) e. ZZ ) )  | 
						
						
							| 43 | 
							
								24 42
							 | 
							impbid | 
							 |-  ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rabbiia | 
							 |-  { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } | 
						
						
							| 45 | 
							
								1 44
							 | 
							eqtri | 
							 |-  Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |