Step |
Hyp |
Ref |
Expression |
1 |
|
dfodd2 |
|- Odd = { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } |
2 |
|
simpr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) / 2 ) e. ZZ ) |
3 |
|
oveq2 |
|- ( i = ( ( z - 1 ) / 2 ) -> ( 2 x. i ) = ( 2 x. ( ( z - 1 ) / 2 ) ) ) |
4 |
|
peano2zm |
|- ( z e. ZZ -> ( z - 1 ) e. ZZ ) |
5 |
4
|
zcnd |
|- ( z e. ZZ -> ( z - 1 ) e. CC ) |
6 |
|
2cnd |
|- ( z e. ZZ -> 2 e. CC ) |
7 |
|
2ne0 |
|- 2 =/= 0 |
8 |
7
|
a1i |
|- ( z e. ZZ -> 2 =/= 0 ) |
9 |
5 6 8
|
3jca |
|- ( z e. ZZ -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
10 |
9
|
adantr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
11 |
|
divcan2 |
|- ( ( ( z - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) |
12 |
10 11
|
syl |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( 2 x. ( ( z - 1 ) / 2 ) ) = ( z - 1 ) ) |
13 |
3 12
|
sylan9eqr |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( 2 x. i ) = ( z - 1 ) ) |
14 |
13
|
oveq1d |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = ( ( z - 1 ) + 1 ) ) |
15 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
16 |
|
npcan1 |
|- ( z e. CC -> ( ( z - 1 ) + 1 ) = z ) |
17 |
15 16
|
syl |
|- ( z e. ZZ -> ( ( z - 1 ) + 1 ) = z ) |
18 |
17
|
adantr |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> ( ( z - 1 ) + 1 ) = z ) |
19 |
18
|
adantr |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( z - 1 ) + 1 ) = z ) |
20 |
14 19
|
eqtrd |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( ( 2 x. i ) + 1 ) = z ) |
21 |
20
|
eqeq2d |
|- ( ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) /\ i = ( ( z - 1 ) / 2 ) ) -> ( z = ( ( 2 x. i ) + 1 ) <-> z = z ) ) |
22 |
|
eqidd |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> z = z ) |
23 |
2 21 22
|
rspcedvd |
|- ( ( z e. ZZ /\ ( ( z - 1 ) / 2 ) e. ZZ ) -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) |
24 |
23
|
ex |
|- ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ -> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) |
25 |
|
oveq1 |
|- ( z = ( ( 2 x. i ) + 1 ) -> ( z - 1 ) = ( ( ( 2 x. i ) + 1 ) - 1 ) ) |
26 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
27 |
|
mulcl |
|- ( ( 2 e. CC /\ i e. CC ) -> ( 2 x. i ) e. CC ) |
28 |
6 26 27
|
syl2an |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( 2 x. i ) e. CC ) |
29 |
|
pncan1 |
|- ( ( 2 x. i ) e. CC -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) |
30 |
28 29
|
syl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( ( 2 x. i ) + 1 ) - 1 ) = ( 2 x. i ) ) |
31 |
25 30
|
sylan9eqr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( z - 1 ) = ( 2 x. i ) ) |
32 |
31
|
oveq1d |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = ( ( 2 x. i ) / 2 ) ) |
33 |
26
|
adantl |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. CC ) |
34 |
|
2cnd |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 e. CC ) |
35 |
7
|
a1i |
|- ( ( z e. ZZ /\ i e. ZZ ) -> 2 =/= 0 ) |
36 |
33 34 35
|
divcan3d |
|- ( ( z e. ZZ /\ i e. ZZ ) -> ( ( 2 x. i ) / 2 ) = i ) |
37 |
36
|
adantr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( 2 x. i ) / 2 ) = i ) |
38 |
32 37
|
eqtrd |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) = i ) |
39 |
|
simpr |
|- ( ( z e. ZZ /\ i e. ZZ ) -> i e. ZZ ) |
40 |
39
|
adantr |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> i e. ZZ ) |
41 |
38 40
|
eqeltrd |
|- ( ( ( z e. ZZ /\ i e. ZZ ) /\ z = ( ( 2 x. i ) + 1 ) ) -> ( ( z - 1 ) / 2 ) e. ZZ ) |
42 |
41
|
rexlimdva2 |
|- ( z e. ZZ -> ( E. i e. ZZ z = ( ( 2 x. i ) + 1 ) -> ( ( z - 1 ) / 2 ) e. ZZ ) ) |
43 |
24 42
|
impbid |
|- ( z e. ZZ -> ( ( ( z - 1 ) / 2 ) e. ZZ <-> E. i e. ZZ z = ( ( 2 x. i ) + 1 ) ) ) |
44 |
43
|
rabbiia |
|- { z e. ZZ | ( ( z - 1 ) / 2 ) e. ZZ } = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |
45 |
1 44
|
eqtri |
|- Odd = { z e. ZZ | E. i e. ZZ z = ( ( 2 x. i ) + 1 ) } |