Metamath Proof Explorer


Theorem dfop

Description: Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998) (Avoid depending on this detail.)

Ref Expression
Hypotheses dfop.1
|- A e. _V
dfop.2
|- B e. _V
Assertion dfop
|- <. A , B >. = { { A } , { A , B } }

Proof

Step Hyp Ref Expression
1 dfop.1
 |-  A e. _V
2 dfop.2
 |-  B e. _V
3 dfopg
 |-  ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } )
4 1 2 3 mp2an
 |-  <. A , B >. = { { A } , { A , B } }